Variable Optimization for Flood Prediction

Wilfried Segretier” — Martine Collard® — Laurent Brisson™* —
Jean-Emile Symphor™**

* LAMIA - Université des Antilles et de la Guyane
Campus de Fouillole B.P. 592
97159 Pointe-a-Pitre Cedex

** Institut Télécom - Télécom Bretagne
UMR CNRS 3192 Lab-STICC
Technopole Brest Iroise CS 83818
29238 Brest Cedex 3

Ceregmia-Martinique

Campus de Schoelcher B.P. 7209
97275 Schoelcher Cedex

ABSTRACT. In this paper, we present an heuristic based approach for feature selection in the
context of flood prediction. Features are complex variables that represent aggregate values.
We apply a preprocessing method on data in order to elicit relevant information that could not
be easily accessible initially because it is split through several lines of a dataset. A genetic
algorithm is used in order to search for the features that may prove the best performances for
flood prediction.

RESUME. Dans cette étude, nous présentons, une méthode permettant de découvrir, par le biais
de variables agrégées et d’un algorithme génétique, des informations non connues a priori et
utiles pour la prédiction de crues.

Cette méthode se préte particulierement aux données dans lesquelles des informations a propos
d’un méme élément sont dispersées a travers plusieurs lignes du jeu de données initial.
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1. INTRODUCTION

River floods are complex phenomena that may be due to multiple factors. As
their impact on traffic and communications may be disastrous, forecasting has been
considered as a major challenge for years. Main techniques used for designing flood
forecasting systems are based on hydrologic models that take into account stream
flow routing methods to predict flow rates and water levels for time periods ranging
from a few hours to several days ahead. Data mining and optimization techniques
may provide alternative or complementary solutions, particularly for selecting sound
predictive features. Indeed optimized feature selection has been identified as a major
issue in data mining processes since first research attempts in the domain.

In this paper, we focus on the example of a particular river for which an hydrologic
forecasting system was designed. Limnimetric levels (water levels) are recorded by
sensors on given spots all along the river course. Currently, flood alarms are triggered
when one sensor is recording a limnimetric level reaching a predefined threshold.
This system performs rather well to predict high limnimetric values on the whole
river with low rates of false positives (FP) and false negatives (FN). But the inherent
phenomenon of flood in the river basin surroundings is not well managed. With same
water levels observed on same spots at a same time before a flood, sensitive areas
down below the river bed may be under water or not depending on other factors
obviously. The issue to address is thus to study the whole mechanism that result in
flooding all these areas.

This work was initiated and funded by the General Council of the island of La
Martinique in French West Indies who is much concerned by river flood problems
since strategic places in the island (main roads, airport, industrial areas) are threatened.

Our final objective is to propose a new model for this natural system that we
can assume to be complex since factors like water height, flow, rainfall, saturation
rate, slope rate or ground types that behave rather independently seem to infer
collectively the flood phenomenon. One practical advantage with such a model will
be to optimize limnimetric and rainfall sensor locations on the river basin. The
complex system approach we plan to adopt consists in a first stage on applying data
mining and optimization techniques in order to extract the most relevant knowledge
on each factor behaviour. A second stage will be to simulate these individual models
and merge them as multi-agents in order to observe possible emerging collective
phenomena inducing similar floods as those observed.

In this paper, we focus on the first stage of the project to propose an extensible
method in order to optimize the selection of features for predicting high limnimetric
levels on the last sensor downstream the river bed. This sensor state may be considered
as the prediction variable since it is located very close to a threatened area. We assume
thus that a threshold overflow on this sensor (called event sensor) is equivalent to
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flood occurrence. The challenge is not only to globally optimize the system predictive
performances but more precisely and according to a decreasing priority:

- to ensure the first requirement that the FN rate has to be very low since this kind of
error may have dramatic consequences

- to extend as much as possible the flood anticipation time

- not to neglect the FP rate for the system relevance.

A simple approach could be to take natural variables that represent liminimetric
levels observed upstream for predicting a high level on this given sensor downstream.
And indeed this kind of predictive models may apparently perform well as we show
in further sections. But they obviously cannot be considered as relevant and sound
solutions since they are learnt on punctual data observed at a given time. We show in
this paper how to define much more relevant variables that integrate levels observed
on a time period. Thus we consider variables, called complex variables, that represent
aggregate values on a time period rather than punctual values. These variables are
defined by a set of parameters that give more flexibility allowing to consider different
intervals of observation and prediction. The approach is extensible to other numeric
records like rainfalls data or flow data.

In this work, we have trained available data that represent real levels recorded by
sensors all along the river course. Unfortunately missing values were rather numerous
due to very hard technical conditions. We have applied an optimization technique
in order to select the best complex variables that represent aggregates of source raw
values. A genetic algorithm has been employed to search for these best predictive
variables among a wide space of potential solutions. The experimental results we
obtained show good performances for selected variables .

The paper is organized in seven sections. Section 2 provides a quick overview
of related works on feature selection. Section 3 describes source data, the data pre-
processing method and a first exploratory analysis. Section 4 introduces the concept
of complex variable and show how it is applied to the flood prediction context. Section
5 presents the genetic algorithm we used and all parameters involved. In Section 6 we
discuss experimental results obtained and in Section 7 we conclude and present future
works.

2. FEATURE SELECTION

Feature selection in data mining and machine learning has been widely studied
for years (Fayyad et al., 1996; Aha et al., 1994; Chakrabarti et al., 1998). In real
life databases in which the dimension of tables may reach very high sizes in terms
of variables, the selection of most representative features is mandatory for learning
algorithms that are not able to afford so many variables. Techniques developed
for eliciting the best subset of original features have proved to be efficient for
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reducing the algorithm runtime and for improving resulting model performances.
This kind of dimension reduction is generally processed in the context of supervised
or unsupervised learning tasks for optimizing the learning process time and the model
interpretability (Kudo et al., 2000; Dy et al., 2004; Devaney et al., 1997; Chakrabarti
et al., 1998).

In supervised learning, the main issue for feature selection is to find a subset of fea-
tures that produces higher classification accuracy. Feature selection in unsupervised
learning is designed to find natural grouping of the examples in the feature space, that
is a good subset of features that forms high quality of clusters for a given number of
clusters.

A step further selection, so called feature extraction or feature preprocessing consists
in building new variables on the basis of source data columns. The issue is generally
to combine original variables in order to obtain better relevant features. For instance,
the well known transformation of principal component analysis (PCA) performs a
linear mapping of the data to a lower dimensional space.

Numerous search approaches have been proposed since the exhaustive evaluation of
feature subsets is generally impractical because of the high computational complexity.
Heuristic techniques like the branch and bound or greedy algorithms are popular
while they do not always perform well. Among heuristic search methods, genetic
algorithms have provided the best results for large datasets (Ralph, 2003).

For some kinds of datasets, such as transactional-data or time-series like the limni-
metric data we study here, in which information about the same object may exist
across several rows, the reduction may require to pre-process the data in order to
flatten them before applying mining algorithms. In the following sections, we discuss
the source data and the complex variables that can reduce the data dimension.

3. SOURCE DATA

As a frequent mandatory step in data mining tasks, source data have to be pre-
processed. And indeed in this study, an entry in the source dataset represents an height
level on a given sensor at a given time. No class label is included. These data have
to be preprocessed in order to represent possible training and test sets for a predictive
modelling algorithm. In this section, we show how data have been preprocessed and
which first simple predictive models can be extracted from them.

3.1. Source data

The available source data we obtained, represent water height levels in millimeters
recorded by sensors on several spots along the river course and its major tributaries
from January 2006 to August 2010. Each measure on a given spot is differentiated
by a timestamp as illustrated by Table 1 that shows a sample of data recorded by a
given sensor. The default interval between two measures is six minutes. The second
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Figure 1. Sensor locations on the river course

column in Table 1 is the record time in minutes in the day. Nevertheless, due to hard
technical conditions, sensors are not always working and thus data are missing. The
whole volume of these raw data is ranging from 162000 to 338000 lines per sensor
depending on the amount of missing values. Figure 1 illustrates schematically the
sensors locations on the river course. The approximate average distance between two
sensors is five kilometers.

In order to label data for supervised classification, we applied the predefined threshold
(used in the current hydrologic system) on sensor measures to split examples in the
Flood class (F) and the Non-flood class (N). In the following, we refer to a flood event
on a sensor to indicate that the limnimetric level recorded reaches the threshold.

Table 1. A sample of source data: Height levels in meters on a given sensor

date minutes level(mm)
01/01/2006 990 320
01/01/2006 1002 321
01/01/2006 1008 320
31/08/2010 1020 267
31/08/2010 1026 300

As a preliminary data exploration, we wondered how would perform a simple pre-
dictive model only based on sensor(s) levels in order to predict the event "Flood" or
"Non-flood" (F or N) on a sensor called the event sensor. We call measure sensor a
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sensor used as a predictor.

While the last sensor Spitz located downstream the river bed should be the best candi-
date to be the event sensor, in this analysis, we chose the Soudon sensor (number 6)
due to constraints on data. Soudon represents a better trade-off since recorded data on
it are more numerous and more balanced among the two classes than data recorded on
Spitz and is not far from the threatened area.

Table 2. A sample of Dataset 1: Height levels on measure sensors recorded 60 minutes
before with the Flood or Non-flood event on the event sensor Soudon

0 1 2 3 4 5 6 7 class
207 689 373 836 702 687 578 990 F
204 542 355 544 266 321 297 442 N

371 716 367 1244 324 405 674 1968 F
93 482 355 464 194 227 734 618 F

3.2. Data preprocessing

We built several datasets structured as shown in Table 2, where each column except
the last one, represents a measure sensor (different or not from the event sensor) and
each line represents the measure sensors levels recorded M minutes before a Flood
(F) or Non-flood (N) event observed on the event sensor. The event sensor may be
included as a measure sensor since levels recorded on its spot before a flood event on
it may be predictive too as shown by the example of Figure 2. As said earlier in this
section, we mainly made experiments on the sensor Soudon which data are the most
numerous and various. Indeed, in the current available data, we found 70 real thresh-
old overflows on Soudon that we considered as flood events. Flood events are much
more rare for other sensors. By "real threshold overflow", we mean that one flood and
only one is said to occur as soon as the recorded level reaches the threshold and stays
upper until it comes down.

For determining Non-flood events among under-threshold levels that are obviously
more numerous in records (1 threshold overflow for 100 non overflow), data were col-
lected randomly among under-threshold while observing a non significant time win-
dow around the event. We finally obtain 300 Non-flood examples.

Each dataset was determined by collecting measures among raw data and recorded M
minutes before a flood/Non-flood event on the event sensor. The last column is the
class label deduced from the event observed on the event sensor. The M minutes pe-
riod is called the prediction period. Dataset 1 was built with a prediction period of 60
minutes for the event sensor Soudon.

To overcome the imbalance between classes in datasets, two common ways are :
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1) either to assign distinct costs to class samples (usually higher costs for the mi-
nority class) (Pazzani et al., 1994)

2) or re-sample the source dataset, either by over-sampling the minority class
and/or under-sampling the majority class (Kubat et al., 1997)

We followed the second approach to create balanced training sets. We over-sampled
the Flood (F) class using the SMOTE algorithm (Chawla et al., 2002) which consists
in generating synthetic examples by randomly selecting points along the lines that join
a minority class original sample and some of its nearest neighbors. We under-sampled
the Non-flood (N) class by randomly picking-up such examples in the original data.
Finally after applying SMOTE, we obtain samples that were equally balanced between
the F and N classes. Models learned from these balanced data were tested on unbal-
anced original data in order to evaluate their performances in a more realistic situation.

3.3. Exploratory analysis

In order to get a first rough idea on which knowledge could be extracted from
these data with simple methods, we applied different standard decision tree based
algorithms such as C4.5 (Quinlan, 1993) , BF Tree (Shi, 2007) and FT (Gama, 2004).
Figure 2 shows an example of decision tree obtained when using the C4.5 algorithm
on Dataset 1. The second branch must be interpreted in this way: if the water level on
Soudon sensor is upper than 306 mm and the water level on Gue-blanche sensor is
lower than 366 mm then the model predict Non-flood on Soudon 60 minutes later.

Figure 2. An example of decision tree learnt on Dataset 1 with the WEKA J48 algo-

rithm
soudon <= 306: N (192.0/13.0)

soudon > 306

|  gue_blanche <= 366: N (46.3/3.49)
gue_blanche > 366

| soudon <= 674

| |  pompage <= 440: N (52.58/23.29)
| |  pompage > 440: F (77.82/25.13)
|

I
|
I
I
| soudon > 674: F (232.3/24.77)

Table 3 shows average performances obtained from Dataset 1 and other similar
datasets built on the same schema from raw data with different M values and for the
event sensor Soudon. Columns give:

- the prediction period length M.
- the decision tree algorithm.
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Table 3. Average performances of decision tree models extracted from Dataset 1 and

similar datasets
Prediction period M | Algorithm Test

FP FN TP TN Acc
C4.5 19,2 9,28 90,72 80,8 82,7
60 FT 15,05 15 85 84,95 84,95
BFT 14,8 10 90 852 86,1
C4.5 272 16,2 838 728 75

120 FT 16,9 32,1 679 83,1 80,25
BFT 26,2 152 84,8 738 757
C4.5 323 83 91,7 67,7 7124
180 FT 26,1 36,1 639 839 80

BFT 30,4 7 93 69,6 74,1

- the FP, FN, True Positives (TP), True negatives (TN) and average accuracy rates
obtained when testing models on different unbalanced original datasets.

Models were learnt by 10-fold cross validation with the three methods on SMOTE-
extended balanced datasets. As we can observe, the best global accuracy rates are
obtained with the shortest prediction period tested of 60 minutes. FP (1-TN) rates are
increasing with M while FN (1-TP) ere very much varying according to M values and
algorithms.

These results were obtained on few data with very unbalanced class distribution.
We may obviously assume that they would generalize badly on new data since on
one hand they only take into account punctual records and on the other hand the
prediction period M is constant for any branch in the tree.

As stated in the introduction, our final objective is to model the collective con-
tribution of different factors in flood occurrence. Thus we need to buid a flexible
and extensible modelling method that should enable to integrate not only limnimetric
punctual measures but other index measures considered on different time periods. This
multi-objective challenge was the motivation for defining complex variables presented
in the next section.

4. COMPLEX VARIABLES

The underlying idea is to test the predictive performance of features that would
represent the river activity summarized on a time period by comparison to simple time
measures. For instance, we may intuitively think that the water height level average
and standard deviation computed over a given time period for a measure sensor before
a flood event on an event sensor may be quite relevant. We adopted the same approach
as in (Ralph, 2003) and we had to make an important pre-processing to adapt original
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data. In this section, we define the notions of structure and complex variable (CV),
and then we show how they were applied in the flood prediction case.

4.1. Definition

A structure is a template for complex variables (CV) which values are aggregates.
A CV is derived from a structure by instantiating its parameters.

A structure is defined by:

— an aggregate function (most of the time a statistical function)

— a set of aggregate attributes on which the aggregate function is applied
— a set of contextual conditions

— a group-by attribute

Let us note such a structure S as follows:

S=

<aggregation function>
<aggregate attribute>
<contextual conditions>
<group-by attribute>

As an example applied to flood data, let us consider the structure S1 which models
aggregates as standard deviation of measures for each measure sensor:

Si=

<standard deviation>
<sensor measure>

<condl: aggregation period,
cond2: prediction period,
cond3: event sensor 6>
<measure sensor id>

S1 parameters are the measure sensor ms and the aggregation and prediction period
lengths illustrated as on Figure 3. Figure 3 summarizes the principle applied to
compute aggregate values according to the S1 structure: for a Flood or Non-flood
event occurring at time T (evt T), an aggregate value is computed upon a period of
0t’ minutes (aggregation period) before the beginning of the prediction period §t that
ends itself with the event.

We could derive from S1, CVs that represent for instance:
(1) the standard deviation on [60 minutes] of measures recorded on the ms [sensor
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Figure 3. Aggregation computation procedure

tT
1 5t | 5t e: >
1 1 1

aggregation period prediction period time

2] during the [last 3 hours] before the flood event occurring on the event sensor
[sensor 6]

or

(2) the standard deviation on [120 minutes] of measures recorded on the ms [sensor
5] during [90 minutes] before a Non-flood event observed on the event sensor
[sensor 6].

Thus a CV is defined by its structure and a tuple of parameters. For instance, CVs

defined above in (1) and (2) are defined by S1 and the 3-tuple (ms, 6t’, §t) where ms
is the sensor measure, 0t’ is the aggregation period length and 0t is the prediction
period length.
The search for best CVs that can be derived from a given structure is equivalent to
a combinatorial search through the different possible values of its parameters. The
main objective in this work, is to search for best combinations of CVs derived
from different structures.

4.2, Application

In order to apply this approach to flood data, namely to obtain an efficient flood
prediction from water levels, we have used structures similar to S1 from which
derived CVs represent aggregates computed as shown on Figure 3. In this context, the
only aggregation attribute to study is the water level recorded on a measure sensor,
the group-by attribute is the measure sensor id and the contextual conditions are on
the aggregation period, the prediction period and the event sensor. For instance, let us
consider the S2 structure

S2=

<arithmetic mean>

<sensor measure>

<condl: aggregation period,
cond2: prediction period,
cond3: event sensor 6>
<measure sensor id>
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S1 and S2 represent the standard deviation and the arithmetic mean of sensor
measures upon the aggregation period before the prediction period that ends with
the event (F or N) occurring on the event sensor. Like S1 and S2, all the structures
we have considered differ from one to each other only on the aggregation function
and on the event sensor id. We have checked different aggregation functions like the
Energetic Mean (EM), the Harmonic Mean (HM), the Arithmetic Mean (AM), the
Standard Deviation (SD) and the Quadratic Mean (QM) as discussed in Section 6.

A complex variable derived from these structures is partly defined by the 3-tuple
(ms, 0t', 5t) where ms is the sensor measure, dt’ is the aggregation period length and
0t is the prediction period length.

If we call independent CVs variables that refer to different measure sensors, the final
objective is to find best combinations of independent variables for prediction. A CV
has to be evaluated according to its efficiency to predict a class (Flood or Not-flood
on a given event sensor). For this reason, values of CVs are discretized into bins
and the evaluation is computed according to class distribution onto CV bins. In this
experience, we have limited the discretization to two bins only. Thus the complete
definition of a CV includes the bins limit.

In conclusion, in this application, a CVs is entirely defined by a given structure and a
4-tuple (ms, 6t', §t,B) where B is the bin limit in the variable value set.

Table 4 gives a sample of a resulting aggregate dataset obtained with values of
different variables derived from the structure S2. In this dataset, columns give:
— the measure sensor ms on which the aggregation is computed

— the absolute and relative timestamp (date and min) ; these data are not directly
used but allow to check if several lines refer to the same time

— the aggregation period length 6t’

— the prediction period length §¢

— the event sensor es

— the class (Flood or Non-flood) corresponding to the event sensor state

— the aggregate value A.

Table 4. A sample of aggregate data as values of

ms date min &t st e C A
3 01/04/09 570 120 60 6 N 480
3 17/01/09 543 120 60 6 N 651
1 28/04/09 870 240 120 6 F 487
2 08/01/09 810 240 180 6 N 462




12 1 soumission a Revue ISI - Numéro spécial "Systémes d’Information et de Décision
pour I’Environnement"

Figure 4. Complete chromosome sequence
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In the following sections 5 and 6, the only event sensor considered is Soudon
because it is currently the best trade-off as explained in Section 3.

5. GENETIC ALGORITHM

As we have seen in the previous section, the search for best combinations of CVs

derived from a given structure comes down to an optimizing search into the space of
its parameters values combinations. However, when the number of parameters and
the number of values for each parameter is increasing, the resulting combinatorial
explosion does not allow to look exhaustively over all possible CVs in a reasonable
time. For example, if there are only five parameters and each of them can take ten
values, the number of CVs that can be derived reaches 100000.
Stochastic methods are thus indicated in this case. We decided to explore the solutions
offered by Genetic Algorithms (GA) (Holland, 1992; Mitchell, 1998) that stochastic
methods and use global search heuristics belonging to the family of evolutionnary
algorithms. They are inspired by evolutionnary biology’s main principles such as
inheritance, mutation, selection and crossover. They have proved to be efficient when
applied in a close context (Ralph, 2003) to solve combinatorial problems. In this
section, we describe the specific GA we implemented with the EO library’s functions
(Keijzer et al., 2001).

5.1. Individual Encoding and Genetic Operators

5.1.1. Chromosome representation

As seen in Section 4, a CV derived from a given structure can be encoded as the
sequence (ms, 0t’, dt, B) and evaluated according to its predictive power on a given
sensor event. Since we are searching for different variables on different sensors, a
solution (or chromosome) is defined as sequence of n independent CVs as illustrated
on Figure 4. At this level, each CV codes a gene and CV parameters are sub-genes.
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5.1.2. Crossover

The crossover principle consists in mating chromosomes (individuals) -the

parents- in order to obtain new ones -the offsprings- made with their genetic heritage.
The main purpose of this operator is to diversify an existing population in order to
improve it.
In this work, the main operator we used is a quad crossover operator which consists in
choosing two parents and computing two offsprings. This operator can be described
as follows: when two individuals are selected for crossing, a user-defined number
(generally n/2) of steps is accomplished. Each step takes place in the following way:

— First, in each individual, a gene (CV) is randomly chosen among its n genes.

— Then, two options are chosen with equal probability :

1) The two genes are simply switched

2) A randomly chosen number of their sub-genes (CVs parameters) are se-
lected to be switched.

In these two cases, a control step is processed before validating the crossover in

order to check the new offsprings independence property: new offsprings have to be
sequences of independent CVs too.
Table 5 show an example of the application of this operator on two individuals. In this
case, genes V77 and Vo3 have been entirely switched, whereas only the sub-genes 5t/
and B that represent the aggregation period and the bin limit, have been exchanged
between genes V75 and Vas.

5.1.3. Mutation

The main purpose of the mutation operator is to prevent from the premature con-
vergence of a population by allowing undirected jumps to slightly different areas of
the search space. It is also useful in order to introduce a new genetic information that
was not entered during the initialization step. Generally, mutations occurs randomly
and very rarely with a probability under 0.01.

The mutation operator that we used consists simply in changing the value of a given
sub-gene in an individual by either a randomly selected valid value or a close value.
As for the crossover operator, the independence property is checked.

5.2. Fitness Function

The fitness function plays an essential role in a GA process as it assigns a score
to each individual in the population in order to evaluate its quality regarding the
problem to solve. Generally, the main challenge encountered while searching for
an efficient fitness function is to elaborate a function which is not only computed
from the individuals coding but is easily optimized too. For the particular problem of
prediction, the fitness has to measure the predictive efficiency of individuals, that is
their ability to separate classes. We have trained the three following functions. Let us
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Figure 5. Quad-crossover
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take:

— z as a given event sensor

— the complex variable CV=(w,x,y,L) for the event sensor z

— J, the set J of tuples available in the learning sample similar to Table 4 which
schema is (ms,ot,0t’, es, C, A).

- S={te J|tms] =w,t[6t'] = z,t[0t] =y, tles] = z}

— I the set of bins defined for values of A

—foreachiin I, S; = {t € S | t[A] € i}

— P;(X) is the probability P(t/t[C] = X andt € S;) for each class C
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We have first considered two functions that tend to measure the class separability
power induced by a variable and the discretization in bins selected for its values. F1
is directly dependent on the probability of each bin, so it has to be maximized. F2 is
based on the entropy measure of each bin, so it has to be minimized.

F1(CV) = |1§|Z Sil.- H»(F)—Pi(N)‘ [1]
i€l
F2(CV) = —‘—; Z S; -[Pi(F)logz(Pi(F))‘i‘
i€l [2]
RN Yog:( PN

The fitness functions described above were implemented to evaluate the predictive

power of a given CV. For individuals that are composed of several CVs, we define the
fitness as the average fitness on its CVs.
For a combination of p CVs (C'Vy, C'Vy, ...CV;...C'V}), we have also considered the
fitness function (F3) defined as a simplification of the relative entropy (or Kullback
divergence ) that measures the difference between distributions of classes. It has to be
maximized.

OV OV OV Ol R

where P;;(X) is the probability P;(X) for CVj.

5.2.1. Fitness comparison

In this section we compare the behaviour of these three functions. Figures 6(a),
6(b) and 6(c) show, for given AG parameters and structure, each corresponding fitness
evolution along generation. We have plotted the average fitness computed over the
population at each generation for several experiments. We can observe that for F1
and F2, the values are rapidly close and converge approximately at the same time,
after nearly 50 generations. We may think that this premature convergence is related
to the relatively small size of the search space due to the fixed parameters, however
the important point to note in this section is that they behave similarly. On F3 curves,
we can see that the convergence occurs later, approximately between 100 and 500
generations, and that the values are varying from a run to another. Figures 7(a), 7(b)
and 7(c) show the evolution of the fitness standard deviation into the population for
the same experiments. We can check that the deviation is quite weak into populations
generated with F1 and F2 and much more important into populations generated by
F3.
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6. Experimental results

In this section, we present results obtained with the GA for searching best solu-
tions (chromosomes) as combinations of independent CVs. We checked various GA
parameters ( number of generations, operators probability, selection scheme, popu-
lation size... ). The best results presented here were obtained with the following
parameters:

— 2000 generations

— a crossover probability of 0,6
— a mutation probability of 0,1
— tournament selection

— 100 individuals population

We trained different aggregation functions such as Energetic Mean (EM), Har-
monic Mean (HM), Arithmetic Mean (AM), Standard Deviation (SD), Quadratic
Mean (QM). In order to take into account the temporal evolution of the river, we
linearly weighted these functions so that latest limnimetric levels recorded were more
significant.

6.1. Selection of best CVs combinations

First, we have considered different CV structures separately and we have run the
GA in order to obtain the best sets of variables regarding each structure. Then, among
the best CV sets obtained, we picked with an exhaustive method, the best variables
related to different structures in order to design new combinations composed of 3,
4, 5 or 6 CVs related to different structures. The exhaustive approach was made
practicable thanks to the low number of potential structures and the size of the
individuals. The independence property was checked in this step too and another
constraint was checked in order to avoid more than 2 occurrences of the same measure
sensor in a combination.

We have compared results obtained for combinations of different sizes (number
of CVs). Tables 5, 6 and 7 give the composition of best individuals selected for each
size. In these tables, the ms column indicates the sensor measure, the Agg column
the aggregation function, 6t’, 6t and B columns represent the aggregation period, the
prediction period and the bin limit for each CV. The Avg Fitness column gives the
average fitness for the combination.

We can observe that the combination sizes 3 and 4 provide the best fitness. Whatever
the size be, we can note that :
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Table 5. Composition and size comparison of best individuals obtained with F1

Size p— ABg ;St ct:sr;mosg;ne 2] Avg Fitness

6 | HM | 120 | 60 | 740

3 6 | EM | 180 | 60 | 1333 82,3
5 | EM | 120 | 60 | 451
6 | HM | 120 | 60 | 740
1 SD | 240 | 60 13

4 5 | EM | 120 | 60 | 451 81,6
6 | EM | 180 | 60 | 1333
5|1 QM | 60 | 120 | 455
6 | HM | 120 | 60 | 740

5 6 | EM | 180 | 60 | 1333 80,9
5 | EM | 120 | 60 | 451
1 SD | 240 | 60 13
5 | QM | 60 | 120 | 455
6 | HM | 120 | 60 | 740
6 | EM | 180 | 60 | 1333

6 5 | EM | 120 | 60 | 451 798
0 | EM | 240 | 60 | 658
1 SD | 240 | 60 13

— the energetic mean:
z = 10.logio(D_ 107/10) [4]

i=1

often appearing in best individuals, suggesting that its “summarizing power” performs
better than other functions, in this context.

— the best prediction periods are frequently 60 minutes, so that as expected, the
short-term prediction is often better.<w

— the best aggregation periods are often 120 or 180 minutes.

— F1 and F2 provide very similar combinations either on aggregation functions or
on measure sensors while results with F3 are slighly different with more variety in
prediction periods dt.

— the measure sensor 6 Soudon and event sensor too, appears to be much predic-
tive.

To overcome the problem of short prediction periods, we checked a constraint so
that a given prediction period cannot appears more than once for a given measure
sensor. Table 8, similar as Tables 5, 6 and 7, shows the new individuals obtained with
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Table 6. Composition and size comparison of best individuals obtained with F2
Best chromosome
Agg | ot' | ot B
HM | 120 | 60 | 740
EM | 180 | 60 | 1333 0,446
EM | 120 | 60 | 448
HM | 120 | 60 | 740
HM | 240 | 60 | 756
EM | 120 | 60 | 448
EM | 180 | 60 | 1333
QM | 60 | 120 | 455
HM | 120 | 60 | 740
EM | 180 | 60 | 1333 0,481
EM | 120 | 60 | 448
HM | 240 | 60 | 756
QM | 60 | 120 | 455
HM | 120 | 60 | 740
EM | 180 | 60 | 1333
EM | 120 | 60 | 448
EM | 240 | 60 | 658
HM | 240 | 60 | 756

Size Avg Fitness

Z

0,464

0,49

(9)]
SO UL AN WUNANANNOY O NN

more various dt values in the best combinations found with F1. As we see, the av-
erage fitness values stay very close to values obtained without the constraint in Table 5.

6.2. Test of best combinations

In order to test the performances of the best GA individuals ie combinations of
CVs, we built aggregate datasets as illustrated by the sample of Table 9. In this table,
each line represents a n-tuple ( Ay, As,..., A,, class) with n < 6 where each A; is the
aggregate value of the i-th CV of a best individual and the class attribute refers to an
event that occurred a while later on the event sensor Soudon.

A VERIFIER A dataset was generated for each best individual obtained with F1 and
F3 as they appear on Tables 5, 7 and 8. Since F1 and F2 behaves similarly, we only
keep F1.

In these datasets, each value is computed with its own parameters, such that two
values of a same line may have been computed on different periods before the same
event. Since the initial data contain missing values (for periods ranging from a few
minutes to several months) these datasets also contain missing values.

Among the best combinations of Table 5, we have generated datasets only for size 3
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Table 7. Composition and size comparison of best individuals obtained with F3

Size Best chromosome
ms | Agg | ot' | ot B
6 | EM | 120 | 60 | 1765
3 0 | HM | 180 | 120 | 1011
1 EM | 60 | 60 | 678
6 | EM | 120 | 60 | 1765
4 0 | HM | 180 | 120 | 1011
1 EM | 60 | 60 | 678
1 SD | 180 | 120 11
6 | EM | 120 | 60 | 1765
0 | HM | 180 | 120 | 1011
5 1 EM | 60 | 60 | 678
1 SD | 180 | 120 11
0 | QM | 120 | 240 | 763
6 | EM | 120 | 60 | 1765
0 | HM | 180 | 120 | 1011
6 1 EM | 60 | 60 | 678
1 SD | 180 | 120 11
0 | QM | 120 | 240 | 763
6 | EM | 60 | 180 | 1751

and 4 in order to test the model performances for a fixed prediction period. Indeed
these combinations contain CVs which 6t’ is always 60 minutes. We have tested these
same combinations on the two prediction periods of 60 minutes and 120 minutes.
Results are presented in Tables 10 and 11.

We have applied on these datasets, the same tree based algorithms as in Section 3 on
simple data. Thus predictive models learnt looks like this one:

PLACER ICI L ARBRE ET VERIFIER QUE LA PHRASE CI DESSOUS EST
CORRECTE

We can interpret branches like the XXXX one as follows:

If the standard deviation of sensor 5 levels during 120 minutes overtakes its threshold
and if the energetic mean of sensor Gue-blanche levels during 60 minutes overtakes
its threshold and ...

Then the flood may occur on the event sensor Soudon with the probability p.

Tables 10 and 11 present performances obtained for prediction periods of 60
and 120 minutes as explained just above. These tables gather results obtained on
simple data previously presented in Section 3 and on aggregate data. The first column
Method indicates if the decision tree was learnt and tested on simple data or aggregate
data. The second column indicates the learning algorithm applied.
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Table 8. Composition and size comparison of best individuals with prediction period
constraint and F1

Size s ABg e:;t ctgr;mos;rtne 5 Avg Fitness

6 | EM | 60 | 60 | 1118

3 0 | EM | 120 | 60 | 619 81,5
5 | QM | 120 | 180 | 442
6 | EM | 60 | 60 | 1118
0 | EM | 120 | 60 | 619

4 6 | HM | 60 | 120 | 764 80,4
5 | QM | 120 | 180 | 442
6 | EM | 60 | 60 | 1118
0 | EM | 120 | 60 | 619

5 6 | HM | 60 | 120 | 764 79,1
5 | QM | 120 | 180 | 442
0 | HM | 240 | 120 | 616
6 | EM | 60 | 60 | 1118
0 | EM | 120 | 60 | 619
6 | HM | 60 | 120 | 764

6 5 | QM | 120 | 180 | 442 784
0 | HM | 240 | 120 | 616
3 | QM | 240 | 60 | 740

Table 12 presents the performance rates obtained for mixed prediction period with the
individuals presented in table 8 and F1. The column Size indicates the individual size.
TABLE A INSERER SUR F3 Table ?? has the same composition as Table 12 and
presents the performance rates obtained with the individuals presented in table 7
obtained with F3.

In the four tables, the column Algorithm indicates the decision tree technique and
columns FP, FN, TP, TN and Acc present the performance rates of the tests on
unbalanced data.

The results presented in Table 10 and Table 11 confirm the conjecture that
aggregate variables perform well either on global accuracy or on TP or TN rates.
Indeed for the 60 minutes prediction period with aggregate variables, the average
accuracies (84,7%, 85,1%, 88,3%, 87,2%) and TN rates (85%, 86,9%, 89,9%) are
quite good, but slightly improve results on simple variables. For the 120 minutes
prediction period, while the global accuracies are not so good, we can observe the
best FN rate of 6% obtained with C4.5.

But results of Table 12 are much more encouraging since they show that longer
prediction periods and large CV size may be good predictors. Indeed, we can observe
that the best individual of size 6 of Table 5 that is defined with prediction periods of
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120 and 180 minutes and aggregation periods of 120 and 240 minutes perform very
well since it provides the lowest FN rate of 9,9% with a correct FP rate of 14,4%.

As explained in Section ??, TN rates minimization is a concern of first priority
in this prediction problem. But the optimization of the prediction period is quite
important too to provide better anticipation margin on the ground. According to
these requirements, the complex variable approach gives encouraging results that
confirm the a priori idea that summarizing the limnimetric activity on periods may
provide sound predictions. Of course, these tests have to be extended to new and
more numerous data we hope to obtain soon.

Table 9. Example of Aggregate Data according to different CVs

cVy CV, cv, Class
381.81 38220 ... 505.13 N
? 1520.71 ... 392.77 N
409.24 ? .. 469.90 N
? 1784.25 ... 741.68 F
2455.80 2859.35 .. 2660.03 F

Table 10. Performance of decision trees for a 60 minutes prediction period
Method Algorithm Test

FP FN TP TN Acc
C4.5 19,2 9,28 90,72 80,8 82,7

Simple FT 15,05 15 85 84,95 84,95

BFT 14,8 10 90 85,2 86,1

C4.5 15 16,8 83,2 85 84.7

Aggregate (Size 3) FT 162 14,5 84,6 83,6 83,8

BFT 14,6 15,7 843 85,4 85,1
C4.5 10,1 18,6 814 89,9 88,3
Aggregate (Size 4) FT 14,6 12,5 87,5 84,9 85,4
BFT 12,8 11,4 88,6 86,9 87,2

7. CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated the question of searching for complex variables
that represent summarized values over time and evaluating their predictive perfor-
mance for flood prediction. Since floods are complex phenomena due to multiple
factors, the objective was to obtain an extensible and flexible solution that will enable
to enter new types of data and new parameters easily.
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Table 11. Performance of decision trees for a 120 minutes prediction period
Method Algorithm Test

FP FN TP TN  Acc
C4.5 27,2 16,2 83,8 728 75
Simple FT 16,9 32,1 67,9 83,1 80,25
BFT 26,2 152 84,8 73,8 757
C4.5 33,8 6 94 66,2 71,5
Aggregate Size 4 FT 19,2 19,4 80,6 80,8 80,7
BFT 225 14,5 855 715 79

Table 12. Performance of decision trees for mixed prediction period on aggregate
data

Size | Algorithm Test

FP FN TP TN Acc
C4.5 10,2 222 77,8 89,8 87,5
3 FT 93 20,7 79,3 90,7 88,5
BFT 17,9 10,5 89,5 82,1 83,5
C4.5 10,7 20,1 799 89.3 875
4 FT 12,5 17,6 824 87,5 86,7
BFT 153 11,3 88,7 84,7 854
C4.5 12,5 14,5 855 87,5 87,2
5 FT 10,5 179 82,1 89,5 88
BFT 12,3 124 87,6 87,7 81,7
C4.5 12,8 17,6 824 87,2 86,3
6 FT 15,7 16,2 83,8 84,3 842
BFT 144 99 90,1 856 865

In this work, we have assimilated a flood phenomenon to the occurrence of high water
levels since our main objective was to demonstrate the advantage of the solution for
prediction. Our approach was to follow a methodology in five steps:

— raw data were preprocessed in order to infer new datasets fitted to the selection
of best complex variables,

— a genetic algorithm was designed in order to address the optimization problem
in a large space of potential solutions,

— the best complex variables found were merged to provide best combinations that
were considered as the new predictive variables,

— new datasets defined by complex variables were computed,
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— predictive models learnt from these data proved to be efficient on the available
data.

The results presented in this paper demonstrate the potential efficiency of the approach
and open new perspectives for further works. This first attempt may be now extended
to introduce informations on stream flow, rain flow and tides and may be other envi-
ronmental factors in order to select more complete variables. The system has to be
tested on new and more numerous data recorded recently. Further research axes will
focus on other meta-heuristics that should be benchmarked with genetic algorithms
and on multi-objective optimization techniques allowing to find best trade-offs among
solutions.
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