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Abstract The study of information dissemination in social networks is of particular
importance in many areas as marketing, politics and security for example. Various
strategies are being developed to disseminate information, those aimed at dissemi-
nating information widely and those aimed at disseminating information in a more
confidential manner to make it scarce. In this paper, we adapt a model dedicated to
spreading rumours by word of mouth in a physical space to the context of social
networks. We compare two modes of dissemination based on profusion or scarcity
and study the impact of the choice of the initial node. The results obtained show
to what extent each mode exploits the social network topology and especially the
influence of hubs.

1 Introduction

Dissemination of information within social networks covers many phenomena that
are part of everyone’s daily life (spread of fake news, buzz effects, propagation of
emotions, adherence to projects, etc.). Dissemination of this information is crucial
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both from a civilian point of view (to make a brand known, to find funding, to
convince people of a political ideology, etc.) and from a security point of view (to
prevent fake news from spreading, to understand how harmful ideas spread, etc.).
Two strategies are observable: trying to saturate networks and spread information
massively, or trying to target a small population so that the information is consid-
ered an advantage if it remains confidential on the principle that “everything rare
is expensive”. In this paper we study these two modes of information dissemina-
tion. The first, profusion, when the broadcaster relays the information if most of
its neighbours are already informed, and the second, scarcity, when the broadcaster
relays the information if most of its neighbours are not already informed of it.

Dissemination of information have long been studied in various disciplines as
physics, economics, psychology, medical sciences for examples. Numerous stud-
ies have looked at the phenomenon of dissemination from the point of view of the
spread of epidemics, which has led to the development of models combining epi-
demiological mathematics and stochastic solutions [11]. Other studies are interested
in dissemination from the point of view of rumours spreading. The first approaches,
both in epidemiology with the famous SIR compartment model originally defined
by Kermack and McKendrick [11] and in rumor modeling with the DK model pro-
posed by [6], were based on differential equations. Most extensions of the original
DK models define spot refinements on individual behavior of Spreaders and Stiflers
and on pair wise contacts. Zhao et al [14] introduced the concepts of forgetting and
remembering that is close to recursiveness. An individual that was a Spreader but
forgot the story, may remember it and becomes again a Spreader. Cheng et al [3]
rather considered the quality of the link as the frustiness between two individuals
as a main factor for spreading or not the story. It defined also a probability for a
spreader to have less interest in the rumor independently of the number of Spread-
ers or Stiflers he meets. Xia and Huang [13] focused on the evolution of belief of an
agent about rumor and anti-rumor. The approach of Borge et al [2] is rather similar
since they consider that Spreaders may become inactive at times. The ODS model
proposed by Collard et al [5] is based on the spread of a rumor from one individ-
ual to another individual through word of mouth. It is a compartment model that
takes into account the spatial location of mobile agents to model the propagation of
the rumor. This work was a first attempt to consider the behavior of an Ignorant in
reaction to his/her neighborhood.

More recently, research has focused on the dissemination of information in social
networks. Doer et al. [7] have shown that the structure of social networks allows a
diffusion of rumors much faster than in other network topologies, including com-
plete graphs. According to them the source of the speedy spread of information is
fruitful interaction between the few nodes with many neighbors and the large num-
ber of nodes with few neighbors. He et al. [10] investigated the countermeasures to
be put in place to restrict the spread of a rumor on a social network. They used a
propagation model based on the SIR model and mathematically defined the equi-
librium solution to stop a rumor by means of a counter-rumor. Garcia et al. [8]
design agent-based models to reproduce and to analyse emotions in online commu-
nities. Indeed, although the face-to-face and online interactions are different [12],
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emotions can emerge collectively, as can be seen through the spread of the Internet
memes [9] or conflicts around political debates [4].

In this paper we revisit the ODS model proposed by [5], which models the prop-
agation of rumors by word of mouth in a spatial context, in order to adapt it to han-
dle the dissemination of information in social networks. We are mainly interested
in the mode of dissemination and in the choice of the initial node to disseminate
the information. For a first step we have limited ourselves to the study of a scale-
free network generated by a Barabasi-Albert based algorithm [1]. We compare two
modes of diffusion respectively based on profusion and on scarcity using 5 indica-
tors: Transmissibility potential, Incidence curve, Number of Stiflers at convergence,
Diffusion variability and Influence of hubs (high-degree nodes) during the dissemi-
nation. We observe the impact of the choice of the initial infected node with respect
to its topological characteristics (betweenness, closeness, pagerank and degree) on
the dynamics and the result of the diffusion (i.e. the equilibrium of populations to
convergence).

The remainder of this paper is organized as follows. Section 2 presents the ODS
model we adapted for diffusion in social network. Section 3 presents computer sim-
ulations to study the impacts of the mode of dissemination. Finally, in Section 4 we
discuss results and offer our conclusions and hints for future research.

2 A model of information dissemination

In this section we revisit the ODS rumor propagation model proposed in [5] and
we adapt it to information dissemination through social networks. Let’s consider
a graph G of N nodes and M links where a node represents an agent and a link
represents the possibility for one agent to contact another. As our aim is to model
the information dissemination in a social network, we do not consider mobile agents
and a contact between individuals is defined as a node connected to another one by
a social link.

2.1 Model description

We adapt the ODS model by redefining the three different compartments (i.e. states
of its agents) as follows:

1. Open-minded (O) agents are those individuals who do not have access to the
information and are therefore likely to be informed;

2. Disseminator (D) agents are active individuals currently disseminating the in-
formation;

3. Stifler (S) agents are the individuals who have had access to the information but
no longer disseminate it.
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The ODS model is defined in two versions ODS), and ODS;. In ODS,,, transmis-
sion takes place under the condition of profusion, that is, when an Open-Minded
individual is surrounded by many neighboring Disseminators. On the contrary, in
ODS;, transmission takes place under scarcity condition, that is, when an Open-
Minded individual is surrounded by few neighboring Disseminators. Transitions
from compartment O to compartment D and from compartment D to compartment
S during one step time characterize the dynamics of the model. The probability that
a D-individual k transmits the information to an O-individual upon contact at time ¢
depends on each individual and varies over time; thus it is referred as ﬁ’kOD (1).

Algorithm 1 Simulation of the generic ODS model

1«0

. Initialize the parameter DPeriod {7y < m}

. Initialize the population size to N

. Create N agents

{each agent have a state variable in {O,D,S}}
. Set all the agents O except one which is D
while 3 one D agent do
// OtoD transitions
for each a; € D do
for each g, € O in the neighborhood of a; do

Compute r,? the proportion of D in the neighborhood of ay {r,? >0}
a; will become D with probability BPP = F(rP) {F is a monotonic function from
[0;1] to [0;1]}

12. end for

13.  end for

14. /I DtoS transitions

15.  foreacha; € D do

16. ay becomes S according a Poisson law with mean y =

17.  end for

18.  t<1t+1

19. end while

Ensure: A D agent

A W=

=~ oYX

1
1

_1
Dperiod

The pseudocode for simulating the ODS models is defined in algorithm 1; at the
end of the run, there are no O-individuals which could become an D-individual.

2.2 0 to D’ transition

A first condition under which the transition ”OtoD” may occur is that the two pro-
tagonists are connected. It is the potential receiver, and not the transmitter, who
decides whether or not he will become itself a transmitter. Now, the question is how
an O-individual comes to make the decision to become a disseminator? In the ODS
model, the likelihood that an O-individual a; becomes himself a D-individual is
function of the rate rP(t) of D-individuals in his neighborhood. On this basis we
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define two alternative solutions to ODS: the first one, called ODS),, is driven by the
profusion of information, while the second, called ODS;, depends on scarcity.

2.2.1 Transition based on profusion

In the first instance ODS), of the model, it is assumed that the higher the rate r,? s
the higher the probability that the O-individual a; becomes himself disseminator

will be. Let’s define the function F (algo. 1 line 4) as F,(x) = ﬁ where ¢

is a constant!. Then the value ka = Fp(r,? ) can be interpreted as the profusion of
disseminators around the O-individual a;. Profusion follows an increasing sigmoid
curve: the more the profusion, the more the number of D-individuals in the vicinity
will be: if ka = 0, there are no informed individuals in the vicinity, while if pf =1,
all the neighbors are informed. So, the probability that a; becomes a disseminator
is kOD = ka (algo. 1 line 11).

2.2.2 Transition based on scarcity

The alternative instance ODS;, is based on the assumption that the higher the rate
r,? , the lower the probability that the O-individual a; becomes himself dissemina-

tor will be. Let’s define the F function as Fy(x) =1 — m, where ¢ is a con-

stant'. Then the value sf =F (r,? ) can be interpreted as the scarcity of disseminators

around the given open-minded individual a;. Scarcity follows a decreasing s-curve:

the higher the scarcity, the lower the number of disseminators will be: if s,lc) =0,

all the neighbors are disseminators, while if skD ~ | there are very few dissemina-

tors in the neighborhood. So, the probability that a; becomes itself disseminator is
kOD = sf (algo. 1 line 11).

2.3 D to S” transition

The D to S” transition is common for both instances ODS,, and ODS;. It is ex-
plained in algorithm 1 (lin 15-17) and it is shared with the SIR model. It is based on
the fact that the mean period of time that a D-individual remains in his state is fixed

to Dperiod. Let’s note that y = W is the removal or recovery rate.

! In the experiments the constant ¢ will be fixed to 5.
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3 Experimental results

The experiments were carried out on a Barabasi-Albert graph with 1000 nodes. For
a given set of parameters, each node was initially infected 10 times. By varying the
DPeriod from 10 to 100 in steps of 10 and comparing the profusion mode with the
scarcity mode, each node was infected initially 200 times. Thus, all the results pre-
sented in this section were obtained by calculating the median and standard error
for the 200,000 experiments performed. In order to compare the two dissemination
modes we defined 5 indicators for analyzing the results: Transmissibility poten-
tial, Incidence curve, Number of Stiflers at convergence, Diffusion variability
and Influence of hubs (high-degree nodes) during the dissemination. Moreover,
throughout this section we will comment on the impact of the initial infected node
setup with respect to its topological characteristics (betweenness, closeness, pager-
ank and degree) on the dynamics and the result of the diffusion (see Table 1).

Table 1: Median values of Pearson correlation coefficients of one topological char-
acteristics of the initial node (betweenness, closeness, degree, pagerank) and a mea-
sure describing the dynamics and the result of the diffusion by setting DPeriod and
the dissemination mode. Empty cells mean that no test is statistically significant
(Pvatue > 0.005).

Max Time at max Number of Stiflers Time at

Disseminators ~ Disseminators at convergence convergence

Betweenness 0.17 0.02 0.11 0.06

Profusion Closeness -0.04 -0.16 0.11 -0.08
Degree 0.15 -0.01 0.10 0.06

Pagerank 0.15 -0.01 0.10 0.06

Betweenness -0.14 -0.08

Searcy | Closeness 0.0+ INEETTE]
Degree -0.18 -0.03 -0.11

Pagerank -0.16 -0.03 -0.10

3.1 Transmissibility potential

This indicator shows the extent to which information has been disseminated or
not disseminated. This success is characterized by PopulationRatio which is the
percentage of Stiflers in the population at the end of the diffusion. We define
the OccurrenceRate as the ratio between the number of times the diffusion has
reached at least the PopulationRation threshold and the number of experiments
performed. We conducted our experiments in order to understand the influence
of the mode of dissemination (profusion or scarcity) on the information dissem-
ination in a scale-free network. Figure 1 shows the extent to which information
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dissemination (OccurenceRate) has reached a given percentage of the population
(PopulationRatio) according to the mean duration (DPeriod) an individual remains
in the disseminator state.

e Experimental results with Profusion: Figure 1a shows that the information has
a probability between 0 and 0.4 to pervade up to 70% of the population. This
probability increases slowly with DPeriod.

e Experimental results with Scarcity: Figure 1b shows that the information could
only pervade up to 60% of the population. But, for each PopulationRatio value,
there is a DPeriod threshold for which the information systematically pervade.

g
Vabdo:
EUEZ

R

Occurence rate
Occurence rate
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|
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g
YArqde:

w0 200 300 0.0 300 600 W0 800 0.0 1000 wo 200 00 400 500 60.0 00 800 90 1000
DPeriod DPeriod

(a) Profusion (b) Scarcity

Fig. 1: Occurrence rate where information dissemination reached a given percentage
of the population PopulationRatio by DPeriod (each point is calculated on 10,000
experiments).

3.2 Incidence curve

The incidence curve shows the evolution of the number of newly informed indi-
viduals over time. Figure 2 shows the mean number of new disseminators and the
standard error (y-axis) per unit time (x-axis) calculated on 10,000 experiments.

e Experimental results with Profusion: Figure 2a shows a small number of new
disseminators over time with a non-zero standard error observable on the curve.
The DPeriod moderately influence the intensity of the diffusion peak and the
time it occurs.
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e Experimental results with Scarcity: Figure 2b shows a peak with a large num-
ber of new disseminators whose average intensity is the same regardless the value
of the Dperiod. Unlike experiments with Profusion, the low standard error shows
that the results are very stable from one run to another.

By analyzing the impact of the choice of the initial node, we can see on Table
1 (1st column) that, in the case of diffusion by profusion, the intensity of the dif-
fusion peak (max Disseminators) is weakly correlated with the degree (0.17), the
betweenness (0.15) and the pagerank (0.15) whereas it has no influence on the tim-
ing of the diffusion peak. Conversely, in the case of diffusion by scarcity, closeness
strongly influences (—0.64) the timing of the diffusion peak (2nd column) but not
its intensity (1st column).

DPeriod
100
200

DPeriod

10.0

200
50 300
40.0
50.0
60.0
0.0
80.0
0.0
100.0

Number of new disseminators
Number of new disseminators

100 200 300 400 500 600
time time

(a) Profusion (b) Scarcity

Fig. 2: Incidence curves according DPeriod (for each point, median results obtained
on 10,000 experiments).

3.3 Number of Stiflers at convergence

Another way to observe the outcome of information dissemination is to estimate
the final proportion of people who have been informed, i.e. the number of Stiflers
at convergence. Figure 3 shows the proportion of Stiflers in the population (y-axis)
per unit time (x-axis) according DPeriod. This figure shows, for each point, median
results with their standard error obtained on 10,000 experiments.

e Experimental results with Profusion: Figure 3a shows that if the diffusion lasts
long enough (time > 400) a large part of the population (from 65% to 80%) can
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be informed. However, it is also observed that over the time interval [200, 600]
the standard error is high, which shows a large variability in the impact of the
diffusion.

e Experimental results with Scarcity: Figure 3b shows that the duration of a
diffusion is shorter than a diffusion by Profusion. The DPeriod influences the
final number of Stiflers which ranges from 40% to 65% of the population. Again,
we can see a very low standard error which highlights the stability of the result.

By analyzing the impact of the choice of the initially infected node, we can see
from Table 1 (3th and 4th columns) that in the case of Profusion, once again, this
choice does not influence the equilibrium of populations at convergence or the time
of convergence. However, in the case of Scarcity, closeness strongly influence the
time at convergence (—0.43).

09 09
DPeriod DPeriod
10.0
20.0
300
o7 40.0
50.0

0.0
2010
300
07 40.0
50.0

0.8

% nodes
% nodes

100 200 300 400 500 600
time

(a) Profusion (b) Scarcity

Fig. 3: Population of Stiflers according DPeriod (for each point, median results
obtained on 10,000 experiments).

3.4 Diffusion variability

This indicator allows us to observe whether the diffusion always occurs in the same
way with the same setting. During the study of the incidence curve and the num-
ber of Stiflers at the convergence, we have observed a high standard error with the
profusion mode. In order to analyze this characteristic, we compare in Figure 4 the
mean standard deviation of the number of Stiflers at the convergence (x-axis) by
reproducing 10 times for each node a diffusion with the same initial setting. So,
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Fig. 4: Profusion vs Scarcity - Mean Standard deviation of Number of Stiflers at
the convergence computed over 10 experiments for each initial infected node with
the same diffusion parameters.

each column is the mean result over 10,000 experiments given the DPeriod (y-axis)
and the diffusion mode (Profusion or Scarcity). It is explicit that the scarcity mode
produces robust and reproducible results from one diffusion to another while the
profusion mode produces results whose variability increases with the DPeriod.

3.5 Influence of hubs during the dissemination

Figure 5 shows the temporal evolution of the mean degree of the disseminators
according to the two dissemination modes (Dperiod is set to 10). The observation
of the two curves enables us to say that: (i) with profusion, the agents with a rather
low degree (approximately 1.5 on average) disseminate information throughout the
duration of the dissemination; (ii) with scarcity, early in the process, information
spreads rapidly mainly thanks to hubs (i.e. the agents with a high degree); then,
progressively, agents with decreasing degree disseminate to reach the leaves of the
network with 1-degree.

4 Conclusion

In this paper we have compared two modes of information dissemination in a re-
lational network with a degree distribution following a power law (scale-free net-
work). The ODS model has been adapted to model information dissemination in
the context of social networks where individuals are the nodes of the network and
their social relationships the links between these nodes. We have assumed that the
“acceptance criteria” for one information by somebody depends on the ratio of his
direct neighbors who already possess the information. Such hypothesis enables us
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to concentrate on the endogenous properties of the propagation process and so to
set aside exogenous properties concerning for instance the nature or the quality of
the information. In the first mode the acceptance criteria is based on the profusion
of information in the neighborhood while in the second it is the scarcity. The intent
was not to decide between the two but rather to determine the respective properties
of each of these modes either in term of dynamics or from the fixed-point property.
We have conducted agent-based simulations; the following are highlights from the
experimental results:

Transmissibility (section 3.1) An information spread by profusion can affect
slightly more individuals but with much less certainty than with scarcity.
Incidence curve (section 3.2) When information spreads by scarcity, the intensity of
the diffusion peak and when it occurs are not influenced by the DPeriod. However,
the higher the closeness of the initial node, the earlier the diffusion peak occurs. On
the contrary, when information spreads by profusion, the higher the DPeriod, the
later and more intense the peak of diffusion will be. Here, choosing a hub (a node
with a high degree or pagerank) as the initial node, influences the intensity of the
dissemination peak.

Number of Stiflers at convergence (section 3.3) In both dissemination modes, in-
creasing the DPeriod increases the number of people affected and the duration of
dissemination. However, when information spreads by scarcity, it reaches more peo-
ple faster than by profusion when the DPeriod is low. However, when the DPeriod
increases the profusion can reach far more people (sometimes the whole population)
than scarcity.

Variability (section 3.4) When information spreads by profusion, we see strong
variability in the results as the DPeriod increases. Thus, it is possible to have a
significant but more uncertain impact than scarcity, where the number of people af-
fected remains stable in all simulations.
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Role of the hubs (section 3.5) The profusion mode tends to flatten the network
topology while scarcity takes advantage of the structure by giving a crucial role to
the hubs and this from the very beginning of the dissemination process.

All these results show that the choice between profusion and scarcity is the ones
that determine to a certain extent how information disseminates in a social network.
As such a choice can result from the nature of information (news, rumor, buzz,
gossip, fake news, etc), in the future we plan to move the current work forward by
trying to establish a link between the method of dissemination and the nature of the
information.
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