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Abstract Discovering community structure in complex networks is a mature field since a
tremendous number of community detection methods have been introduced in the literature.
Nevertheless, it is still very challenging for practitioners to choose in each particular case the
most suitable algorithm which would provide the richest insights into the structure of the
social network they study. Through a case study of the French crowdfunding platform, Ulule,
this paper demonstrates an original methodology for the selection of a relevant algorithm.
For  this  purpose  we,  firstly,  compare  the  partitions  of  11  well-known  algorithms.  Then,
bivariate map based on hub dominance and transitivity is used to identify the partitions which
unveil communities with the most interesting size and internal topologies. These steps result
in  three  community  detection  methods  relevant  for  our  data.  Finally,  we  add the  socio-
economic indicators, meaningful in the framework of the crowdfunding platform, in order to
select the most significant algorithm of community detection, and to analyze the cooperation
patterns among the platform’s users and their impact on success of fundraising campaigns.     
In  line  with  previous  socio-economic studies,  we  demonstrate  that  the  social  concept  of
homophily  in  online  groups  really  matters.  In  addition,  our  approach  puts  in  light  that
crowdfunding groups may benefit from diversity.

Keywords Social Networks Analysis, Community Detection,  Choice of method, Complex
Networks, Online cooperation, Crowdfunding

1. Introduction

In recent years socio-economic research on online groups and communities often
proposes  to  extend  the  traditional  approach  and  to  encompass  social  network
analysis modelling relationships by edges in the graph. The joint analysis of the two
types of data—socio-economic and network structure—makes possible to provide
important  insights  on the  group functioning and to reveal  properties  of a social
network that are not immediately obvious, e.g.  the existence of sub-networks or
communities operating within the global network.

For instance, in the context of crowdfunding platforms, many studies focus on
the directly observable interactions among the participants of individual projects
and show their role for the success of fundraising campaigns [14, 1, 27]. However,
few empirical studies focus on relational structures which are not explicitly stated in
the context of crowdfunding platform [11] and question whether relational circles
can  go  beyond  individual  projects,  by  broadening  the  initial  social  capital  of
projects’ leaders, and form a platform-level cross-project social network. Does the
participation of the members of this cross-project network guarantee higher success
rates  of  crowdfunding  campaigns?  These  questions  have  strong  managerial  and



economic  implications  for  the  platforms:  Could  this  networking  lead  to  the
formation of a core group with an intense participation? Should the platforms further
develop the mechanisms for cross-project  networking? How should project  leaders
surround themselves to give themselves every chance of success? The study of these
questions necessitates an appropriate methodology based on the detection of implicit
communities.  Therefore,  the  question  arises  of  how  to  choose  an  appropriate
community detection algorithm, relevant to the particular context. 

As  a  matter  of  fact,  many  community  detection  methods  exist.  They  have
different ways to divide a network into multiple subsets of densely connected nodes,
and hence  result  in  different  community  structures.  They  may rely  on different
notions  of  community,  and  even  with  the  same  notion  (eg.  Newman  defines  a
community  as a  "group of vertices  with  a  higher-than-average  density  of  edges
connecting them" [17]), algorithms may optimize different objective functions or
use different heuristic to get efficient implementations. The authors of the methods
compare their efficiency in terms of computational properties, such as complexity,
as well as in terms of validation metrics: modularity, rand index, conductance, etc
[9],  describing  resulting  partitions  quality.  Although,  as  demonstrated  in  some
comparative  surveys  [8,9,12],  choosing a community  detection  method is  still  a
problematic task, especially if we are not aware of the underlying mechanisms. 

Some recent papers have attempted to provide guidance on algorithm selection
using criteria such as the mixing parameter  of  a network,  computation time, or
overlap with a simulated community structure [8,27]. Others provide more intuitive
criteria such as the size of the communities  [7]  or  descriptive network-oriented
metrics on structural patterns within communities [5,6]. N. Smith et al. argue that
such criteria should not be applied alone, but in conjunction with business-oriented
objectives: the “best” method depends on the context, on the research question, i.e.
on how the communities will be used [24].

The current paper addresses this problem. It proposes an original methodology
to guide practitioners in their choice of methods in connection to a specific research
question. We first pre-select some candidate methods, and qualify their results, i.e.
the resulting partitions,  through qualitative characteristics.  Then,  final  users may
compare the few pre-selected partitions with comprehensive measures and finally
select the most relevant one regarding the research question. 

The case of the Ulule crowdfunding platform is used as example. In this case
study, we suggest that some non-directly observable  communities may exist within
the cross-project social network. However, as in many exploratory studies, we have
no preliminary information about their number or structures. Our goal is to discover
these communities, to describe their internal organizations and to explore whether
there is a relationship between particular communities’ organization and the success
of fundraising campaigns. This last element is the central research question of the
case study.

This paper is organized as follows: In Section 2, we introduce the Ulule platform
and its cross-project social network. In Section 3, we present a methodology which
permit  us  to  select,  among  11  methods,  three  most  relevant  and  convergent
algorithms to  discover  the communities.  In  Section  4,  by introducing additional
socio-economic attributes of communities, we choose the  most suitable method and



discuss  the  relative success  of  different  communities for fundraising campaigns.
Last Section concludes.

2. Ulule crowdfunding platform 

2.1. Ulule platform and its network
Crowdfunding represents a model of participatory financing, which has been used
by an increasing number of companies, associations and individuals since the early
2010s. Its principle consists for a project "pitched" by its creator, to collect money
from  a  large  public.  Thanks  to  numerous  interaction  mechanisms  between
participants (comments, news, promotion systems, etc.),  these platforms play the
role of facilitators of social capital.

To better  understand the networking role of  crowdfunding platforms, we use
empirical data for the period 2010-2016 from the Ulule platform—one of the main
crowdfunding platforms in France and Europe, which pays particular attention to
the strengthening of its proper platform’s community1. After data cleaning, we keep
19,544 projects, of which 11,900 were successfully funded, and 7,644 failed. They
globally attracted 876,758 contributors,  who contributed a total of 47.75 million
euros.

2.2. Graph of co-contributions
While 99.7% of Ulule contributors are one-time funders, 0.3% of them are not only
very active by contributing to more than three different projects, but they regularly
“meet”,  in each fundraising campaign, the same participants also contributing to
these  projects.  We suggest  that  these  active  contributors,  involved  in  a  least  3
projects with at least 1 other contributor, are candidates to form the cross-project
platform’s network. On average, they contribute to 14 different Ulule projects, for
an  average  total  amount  of  over  600  euros  per  contributor.  With  these  active
Ululers, we define a non-oriented graph of co-contributions, in which each edge
(u,v)  means that the users u and v have contributed to 3 or more projects together.
There  are  469 connected  components.  All  of  them contain  less  than  10  nodes,
except the largest one. With its 2,081 nodes and 4,749 edges, this giant component
proves that the social network, transverse to individual projects, really exists at the
Ulule platform. 

The  members  of  the  cross-project  network  share  projects  with  4.56  other
members  (average  degree).  We  find  a  power  law  distribution  of  degrees  (the
estimated exponential  coefficient  is 2.27) which is  a common property in online
social networks. 25% of the members have a degree greater than 4, the maximum
degree being 199. There are therefore contributors who co-finance projects  with
really important number of different contributors: 24 of them have more than 50
neighbors in the graph.

We notice that the distribution of the Ulule’s thematic categories according to
whether or not projects are financed by the members of the graph reveals interesting
information.  The  improvement  in  the  success  rate  of  campaigns  of  projects
1  https://www.ulule.com/about/ulule/

https://www.ulule.com/about/ulule/


belonging to the graph is observed for all categories (28.6% overall improvement),
especially for Games, Comics, Technology and Publishing. Indeed, these domains
have a strong social component in the production and consumption of goods. These
findings confirm our interest in studying communities of the active Ululers.

We find out that members of the obtained social graph vary a lot in terms of their
social  activity  (node’s  degree,  clustering  coefficient  and  centralities)  and
contribution behavior (number of projects funded, average amount of contributions,
specialization  rate  which  quantify  the  variety  of  thematic  categories  addressed
(projects’ category) and their similarities with the neighboring nodes).

Multiple correspondence analysis on these attributes, followed by a hierarchical
bottom-up classification, leads to 5 clusters of Ulule’s active contributors. A detailed
version is available [15], but for space reasons, we sum up the 5 profiles as follows:

    • The Sponsors (18) are the Ululers with a high degree and betweenness
centrality.  They  may  be  considered  as  facilitors.  Involved  in  140  projects  (in
average), they are very active on various topics (not specialized).

    • The Followers (653) are the users who arrive late, during the second half of
the campaigns. They prefer very big projects (which average objective is more than
17k euros).  Exhibiting a high closeness  centrality,  they  frequently  co-contribute
with other contributors, in particular the Sponsors.

    • The Precursors (538) are characterized by an early arrival in projects and
especially before all their neighbors.

    • The Collaborative Specialists (368), very highly thematically specialized,
have also a very high clustering coefficient  indicating a strong cohesion of links
between neighbors. This may show a strong solidarity between some Ululers whose
financing decisions are often collective, even if their fields of specialization are not
necessarily identical. They don’t contribute to a very large number of projects and
are not attracted by the size of the projects.

    • The Specialists (504) are not high contributors as well in terms of number of
projects, nor in volume of contributions. They are not particularly highly connected
as  well,  but  they  are  however  passionate  about  very  specific  themes,  the  same
themes than their neighbors, demonstrating therefore social homophily.

These findings will be mobilized in the Section 4 to refine the final choice of the
community detection method in connection with the case study research question.

3. A methodology to choose community detection methods

There are many approaches  to  perform community detection  based on different
paradigms, including cut,  internal  density clustering,  stochastic  equivalence,  flow
models, etc [9]. The purpose is not to provide an exhaustive overview here. We
refer  the  reader  to  surveys  like  [9,  23]  to  get  details  about  these  different
approaches. In this work we focus on well-known methods, apply them to our case-
specific graph and show how different the partitions produced can be, making the
choice of a method non obvious.

 We carefully  kept  a  large variety  of approaches  as summarized in Table 1.
While  Edge betweenness  is  based  on edge centrality  detection  in  order  to  split
networks into several communities, Louvain and Fast greedy optimize modularity



by  iteratively  folding  nodes  into  meta-nodes.  Spectral  method  is  also  based  on
modularity, but identifies the community structure by finding leading eigenvectors
corresponding to largest eigenvalues of a modularity matrix. Some approaches are
based  on  a  dynamic  distance:  for  Walktrap,  if  two  nodes  are  in  the  same
community, the probability that a random walker will move from one to another in
only a few movements is very high (notion of trap) and consequently the distance is
low.  Conclude  combines  a  similar  random  walk-based  distance  to  agglomerate
nodes, and the local optimization of modularity inspired by the Louvain method
selects iteratively the best agglomeration. Infomap relies on finding a configuration
that maximizes the compression of random walks represented by an encoded binary
sequence.  Inspired by epidemic  spreading mechanisms,  a  more basic  and direct
distance is  used by the Label propagation  and its  variant SLPA, where a node
should belong to the same community as most of its immediate neighbors. In the
same vein, concepts have also been borrowed from theoretical physics with the Spin
glass model which may be seen as an alternative to modularity maximization; the
idea  is  to  consider  nodes  as  spin  states  and  to  minimize  the  energy  of  the
configuration  of  spins  to  reach  a  stable  state.  Finally  we  can  cite  a  statistical
inference  approach,  DCSBM  which  uses  stochastic  blockmodels  to  infer  the
likeliness that a given observed network (and its latent block structure) is generated
from a compatible model, and then suggest the most likely set of model parameters.

Methods  are  often  compared  with  classic  quantitative  measures  from
information theory domain, such as NMI, the Normalized Mutual Information [3],
which  evaluates  their  agreement  to  arrange  nodes  into  similar  clusters.  Recent
studies introduced more intuitive, and very simple quantitative metrics such as the
size  of  the  communities  [7]  where  methods  are similar  if  they  produce  similar
community size distribution. In [5], the authors propose metrics dedicated to graph
analysts.  They  describe  the  communities  with  structural  measures,  in  order  to
quality  the  communities  from a  topological  point  of  view.  Each  community  is
qualified  with  well-known  organizational  patterns,  such  as  star-based  structures,
cliques (this will be detailed later, in Figure 3). 

In this paper, we propose to practitioners a methodology based on both these
quantitative and qualitative metrics. We show how to use them in order to compare
the methods; through the case study from Ulule, and its specific business question—
which communities lead to successful  fundraising—, we show how to select the
most relevant method:

 The initial  step is  to  run community detection  algorithms.  We used 11
methods described in Table 1 and 11 partitions  (where each node belongs
to only one community) were obtained. 

 Step  1  aims  at  the  choice  of  a  subset  of  methods.  We  compare  the
partitions  with  validation  metrics.  Since  we  have  no  preliminary
knowledge on the platform’s communities, we are looking for the methods
making  consensus  findings  in  order  to  build  a  robust  foundation  for
subsequent steps.

 As proposed in the previous literature, Step 2 brings an additional intuitive
criterion,  the  size  of  communities,  to  refine  the  subset  of  consensual
methods.  



 Step  3 characterizes  the  consensual  partitions  with  qualitative  measures
that are relevant for the current business-oriented problem. As our case
study  focuses  on  organizational  patterns  involving  nodes,  we  will  use
bivariate  maps  based  on  graph  structural  indicators,  such  as  the  hub
dominance and the clustering coefficient.

 The last step introduces specific “business” indicators related to the current
problem to finally make the choice decision (section 4).

3.1. Initiate the selection with consensual partitions
After the initial step, that is run the 11 methods with their default parameters),

we  obtain  11  partitions.  In  the  first  selection  step,  we compare  how nodes  are
arranged  into  clusters:  we  compute  the  Normalized  Mutual  Information  (NMI)
often used in community detection because it allows the comparison of partitions
even  where  nodes  are  assigned  to  a  different  number  of  clusters.  We apply  its
normalized variant with values in [-1, 1] which is popular in the field of community
analysis [3]. The Figure 1b shows how our 11 partitions are astonishingly similar
from a NMI point of view where all scores are positive, ranging from 0,26 to 0,76,
with a large majority above 0,5. Eight among them demonstrate scores greater than
0.6 when compared to each other, with a very consensual group consisting of four
methods: Edge Betweenness, SLPA, Fast greedy and Walktrap with scores higher
than 0.7. There are three slightly different methods: Spectral, Label Propagation and
Spin Glass that produce more specific partitions, which are all different from each
other. While this difference may be easily explained by the fact that Spectral and
Spin  Glass  implement  inherently  distinctive  mechanisms,  the  results  of  Label
Propagation, being a variant of SLPA, are quite surprising.

Method Approach Reference

Louvain Multilevel modularity Blondel et al. (2008) [2]
Fast greedy Modularity optimization Clauset et al. (2004) [4]
Spectral Vector partitioning Newman and Girvan (2004) [18]
Spin glass Energy model Reichardt and Bornholdt (2006) [21]
DCSBM Stochastic blockmodels Karrer and Newman (2011) [13]
Walktrap Dynamic distance Pons and Latapy (2005) [19]
Conclude Dynamic distance Meo et al. (2014) [16]
Edge betweenness Edge centrality detection Girvan and Newman (2002) [10]
Infomap Information compression Rosvall and Bergstrom (2008) [22]
Label propagation Topological closeness Raghavan et al. (2007) [20]
SLPA Topological closeness Xie and Szymanski (2011) [25]

Table 1 : A summary of community detection methods used to study community structure.

As an intermediate result, on the basis of the NMI scores, Edge Betweenness,
SLPA,  Fast  greedy,  and  Walktrap  converge  on  their  clustering  task.  To  put  it
differently, knowing a random node’s affiliation in Edge Betweenness partition, in



our example, gives a high probability to successfully deduce its membership in the 3
other partitions. Louvain is also quite close to this group and as it is frequently used,
we don’t want to discard it right now. 

These 5 methods reach a quite good consensus. We argue that in exploratory
studies,  as  the  current  one,  where practitioner  has  no a  priori  knowledge about
communities  that  she  wants  to  analyze,  it  is  important  to  identify  such   robust
clustering,  demonstrating  an  agreement  between  different  methods.  This  step  is
determinant for the further exploration of the research question.  

3.2.

The size of communities as qualitative choice
We propose then to complete the NMI analysis by adding information about the

size  of  the  discovered  communities  (Figure 1a).  One  can  notice  two  types  of
partitions.  Some  communities  are  large  with  tens  or  sometimes  thousands  of
members.  Other  partitions,  on  the  contrary,  exhibit  small  (2  or  3  members)  to
medium-sized communities (around 10-20 nodes). These two classes of methods
are depicted in Figure 1c, where the similarity score compares the distribution of
sizes of communities (score introduced in [6]).

Figure 1: The similarity between community detection methods in terms of (a) Community
size distributions, (b) NMI, (c) size fitting quality,



Regarding  large  communities,  Louvain,  Spin  glass  and  Spectral  produce  an
interesting  variety  of  large  to  very  large  communities,  whereas  DCSBM  only
produces huge ones. We observe the same disparity when we focus on partitions
with  smaller  groups.  SLPA  and  Walktrap  produce  a  lot  of  communities  with
approximately 10 nodes,  without  notable variety  of sizes.  On the contrary,  Fast
greedy’s and Edge Betweenness partitions have a more flat profile in Figure 1a: most
of their communities are small to medium, but some of them have also more than
100 nodes.

Therefore  the  consensual  methods—Louvain,  Edge Betweenness,  SLPA,  Fast
greedy, and Walktrap—produce different distributions of sizes of communities, we
have to choose whether we give priority to small-medium communities or to large
ones. This example demonstrates that whereas in some contexts,  the size criteria
may be enough to make a choice, such information is not always sufficient. Taking
into account that our research question focuses on the communities’ forms and their
efficiency for the fundraising campaigns, we add topological indicators in order to
differentiate the partitions from the organizational perspective.

3.3. Structural classification of consensual partitions
In order to characterize organizational patterns within communities, which is our

business-oriented objective here in the case study, we propose the use of structural
measures applied to communities such as internal link density, average centrality of
nodes, average degree. Such indicators are interesting to be combined in bivariate
map [6] to describe structural patterns. For example, ploting a bivariate map with
the  mean  out  degree  fraction  (meanODF)  paired  with  its  standard  deviation
(stdODF)  allows  to  explore  different  situations  regarding  the  openness  of
communities  and the cooperation between  groups of Ululers [5].  However,  Hub
dominance and Transitivity  are particularly  relevant when one considers internal
patterns of organization like cooperation, because their combination leads to well-
known patterns depicted on Figure 3:

 Hub  dominance:  Internal  edges  of  a  community  can  be  distributed  in
various ways around its nodes, either concentrating around a few highly
centralized  nodes,  or  uniformly  distributed  over  the  nodes.  The  Hub
dominance metric identifies  the level  of centralized organization around
well-connected nodes. The higher this metric of a community, the more
likely it has a hub-like structure. Hub dominance can be considered as a
normalized version of degree centrality. High Hub dominance leads to the
well-known star-based patterns as depicted on Figure 3.

 Transitivity:  Very  similar  to  the  clustering  coefficient  [6],  Transitivity
reflects the probability that adjacent  vertices of a vertex are connected.
This metric is usually employed to evaluate modular structures (grids) or
clique dominance in networks (Figure 3). For example, high Transitivity
coupled  with  similar  spheres  of  interests  (or  other  attributes)  among
individuals often indicates the existence of social homophily, especially in
online  groups,  also  known  as  the  proverb  "birds  of  a  feather  flock
together".

Figure 2 plots the communities in the Hub dominance vs Transitivity space. One
can see that large communities are concentrated in the same area.  The methods



responsible of those large communities (e.g. Louvain) indeed produce a priori very
few different structural patterns.  With low Hub dominance and low Transitivity,
most communities could be considered as "string-based" structures (Figure 3a).  In
order  to  detect  whether  or  not  cooperation exists  within large  communities,  we
should have to zoom-in to extract dense sub-zones,  i.e. apply again a detection of
community to each community, and then project the new smaller communities in
our bivariate map. 

Conversely, Edge Betweenness, Walktrap and Fastgreedy which produce small
and medium-sized communities seem to generate various directly observable types
of  organizations.  Indeed  the  points  are  distributed  in  3  of  the  4  areas  of  our
bivariate map in Figure 2. We especially find a lot of groups in the upper part of the
map. This means that their members are organized around hubs, but in 2 different
manners.  When the  Transitity  is  high,  we  find  some clique-based  organizations
(Figure 3d), where Ululers are (nearly) all contributing with each other to common
projects. When the Transitivity is low, the organizations are mimicking star-based
structures, with a very high centralization (Figure 3c). Ululers in these groups are
less involved in horizontal cooperation, but seem to follow influencers (Ululers with
large degrees) who concentrate common projects  with a lot of poorly connected
contributors.

With these new insights, Edge Betweenness and Walktrap seem to be very good
candidates: (i) they belong to the consensual group of methods previously shown,
producing  a  robust  partition;  and  (ii)  they  offer  various  internal  organizational
forms.  Louvain,  without  offering  diversified  topological  structures,  demonstrates
however interesting properties of high Hub dominance in its large communities. For

Figure 2: Structural description of communities in terms of Hub dominance and Transitivity
(consensual methods)



this  reason,  we propose  to  keep  Louvain  to  further  explore  the  typology of  its
communities.

To  summarize,  Table  3  describes  the  obtained  communities  using  several
conventional  network  metrics.  First,  the  three  partitions  do  not  appear  very
distinguishable with regards to these traditional indicators. Interestingly, it seems
that the size of the groups does not really influence their average degree. Moreover,
the  average  closeness  centrality  and  the  average  density  also  remain  stable
regardless  of  the  algorithm  used.  Second,  this  confirms  the  need  for  more
qualitative measures, such as the bivariate map that we proposed here above, to
cover the specificities of different community detection methods and to be able to
choose among them. 

Method 
(Communities 
count)

Member
count

(mean)

Degree
(mean)

Clustering
coefficient

(mean)

Betweenness
(mean)

Closeness
(mean)

Louvain (22) 90.48 3.63 0.26 2,871.45 0.24
Edge Bet. (72) 28.90 2.96 0.20 2,234.84 0.23
Walktrap (167) 12.39 2.29 0.15 1,695.03 0.22

Table  3:  Conventional  topological  metrics  to  describe  communities:  number  of communities
generated  (in  brackets)  and  average  statistics  calculated  on  the  whole  set  of  generated
communities.

Figure 3: A categorization of internal community structure according to two topological property



4. Introduction of case-specific data and typology of communities

At  this  step,  in  accordance  with  the  objective  alignment  approach  [24],  we
introduce additional information on the contributors’ profiles, specific to the current
study, which was presented in the Section 2. This helps us to compare classifications
of  communities,  generated  by  three  partitions,  and  to  choose  one  relevant
community detection method. Depending on particular context and available data,
other  socio-economic  indicators  may  be  mobilized  for  the  communities’
classification.

4.1. Final selection of the method
To classify the communities of Louvain, Edge Betweenness and Walktrap methods,
regarding the distribution of contributors’ profiles, the following clustering methods
were  used:  (i)  a  principal  component  analysis  (2  dimensions)  followed  by  an
agglomerated hierarchical clustering (Euclidean distance, Ward method of variance
minimization), (ii) the K-means method and (iii) a decision tree.

The decision tree produces clusters of communities (Families in Figure 4) almost
identical to the K-means method (completeness = 0.964; Adjusted Rand Index :
ARI = 0.854).  Proximity to clusters produced by the component  analysis  is  not
obvious when considering these measures (completeness = 0.513; ARI = 0.398), but
nevertheless, the distribution of the types of contributors remains relatively close.

We observe similar  distributions  of contributors’  profiles  across  the different
community families when we compare the 3 community detection methods  and
their clusters of communities. The same variety of community forms can be seen: 

 Family  1  (with  the  Sponsors):  very  large  balanced  communities
composed  of  all  the  profiles.  They  have  the  particularity  of  having
attracted the Sponsors and a lot of Followers.

 Family  2  (Specialists):  communities  very  clearly  dominated  by
Specialists, whether collaborative or not.

 Family 3 (Followers, Precursors): small and even micro communities
rather dominated by Precursors and to a lesser extent Followers.

Figure 4: Typology of communities (Edge Betweenness, Decision Tree).



Therefore,  regardless  the  clustering  method  and  the  community  detection
method, the three afore-mentioned families of communities are clearly detected.
The only  distinguishing feature  is  the  representation of each community  family
depending on the community detection method.  Edge Betweenness proposes the
most balanced clusters (Table 4), while Louvain produces mainly Family 1 and 2
items,  and  not  surprisingly,  most  of  the  167  (small)  communities  produced  by
Walktrap are from Family 3. 

On  this  basis  we  choose  the  Edge  Betweenness  partition,  composed  of  72
communities of various sizes, exhibiting substantial examples of each family (see
the exact distribution of its Ululers’ profiles in Figure 4).

Family
Commun

ity
(count)

Member
count per

community
(mean)

Member
contributio
n (mean in

€)

Project
goal (mean

in €)

Project
count per
member
(mean)

Project
count per
communit

y
(mean)

1 8 161.5 41.4 8,050 14.4 469.5
2 28 19.1 47.7 8,501 13.3 124.8
3 36 7.0 41.3 9,589 13.7 42.5

Table 4: Sizes of communities and their contributions by Family (Edge Betweenness, Decision
Tree).

4.2. Community structures and projects success
Once  we  know the  community  detection  method,  it  is  possible  to  describe  the
communities and their success rates in fundraising campaigns.

Table 5 uses relational (clustering coefficient, the average of the betweenness and
closeness centralities of the members, mean degree) and socio-economic attributes
(volume of funding, number of interactions via comments, thematic specialization
and  project  success  rate)  in  order  to  characterize  collaboration  rates  and
organization of communities..

Family

Member
count per

community
(mean)

Project
count 

Shared
project
count

(mean)

Theme
count per

community
(mean)

Comment
count per
project
(mean)

Community
Clustering
Coefficient

(mean)

1 161.5 1,642 4.3 13.4 73.2 0.25
2 19.1 781 3.7 4.1 137.3 0.32
3 7.0 547 3.4 5.8 176.0 0.15

Table 5: Communities characteristics

The three families of communities differ crucially in terms of collaboration. On
crowdfunding  platforms,  it  can  take  different  forms:  sharing  projects  within  a
community (weight of links in the Ulule social network), cohesion of members of a



community around the same projects (clustering coefficient), or communication via
a  feedback  system  (comments).  As  presented  in  the  Table  5,  each  family  of
communities in the case of the Ulule platform favors one of these forms.

The combination of two collaborative aspects—the weight of links in the graph
(average number of shared projects) and the clustering coefficient—can inform us
about community organization. For example, in Family 1, the fact that the average
number of shared projects is very high but the members are poorly connected to
each other (low clustering coefficient) highlights a highly centralized organization
around  a  few central  actors.  We probably  find  here  the  communities  with  low
Transitivity  and high  Hub dominance (probably star-based  communities  as  seen
previously). The Sponsors may play the structuring roles of these communities.

The communities in Family 2 are made up of members who share the same
interests.  These  thematic  groups,  which  are  strongly  connected  and  supportive,
collectively take their decisions on project funding and contribute on average more
than other communities. 

Finally, in Family 3, communities are also structured around certain themes but
without  clear  specialization.  Members  of  these  communities  communicate  a  lot
through the feedback system (comments).

4.3. Comparative analysis of success rates of families of communities
Since the thematic categories are not represented in a balanced way in the three

Families of Communities, we cannot directly compare the respective effectiveness
of community forms for the different themes.  Nevertheless,  if we look in more
detail at the communities that have a 100 percent success rate for all our indicators
(Table 6), there are 13 communities belonging to Families 2 and 3 (respectively 9
and 4 communities). These two Families have very close thematic choices.

These best communities are small in size, quite specialized and finance projects
on average on 4 different themes. The projects are very different in terms of the
objectives to be achieved (all types of amounts are represented), but less than 25 %
of the projects have a larger than average scope, so we have rather modest projects.

Surprisingly,  the  9  least  successful  communities  in  the  graph  also  belong  to
Families 2 and 3. What can be noticed in the Table 7 is that the most and the least
successful  communities  share  quite  similar  characteristics  (size,  thematic
specialization). What clearly differentiates the best performing communities is the
clustering coefficient and the number of comments, which are significantly higher.
In other words, the thematic specialization that characterizes Family 2 and partially
Family 3, does not in itself guarantee success of crowdfunding projects. To reach
significant economic performance of fundraising campaigns, they must be coupled
with strong social involvement and cohesion of its members.

With  regard  to  Family  1,  characterized  by  a  high  centralization  and  a  high
thematic openness, we notice a relatively high success rate. Thematic diversity also
attracts participants in communities.



Shared
project
count

(mean)

Comment
count per
project
(mean)

Project
goal

(mean)

Member
count

(mean)

Theme
count

(mean)

Degree
(mean)

Betwee
nness

(mean)

Clustering
coefficient

(mean)

Success Rate 100% (13 communities)
mean 11 517 8,826 6 4 2.84 2,126 0.39

std 6 1,120 6,132 3 3 1.06 1,356 0.35
Min 3 2 2,630 3 1 1.67 777 0
25% 6 21 4,408 3 1 2.00 1,419 0
50% 9 60 7,946 4 3 2,50 1,559 0.43
75% 15 123 10,807 6 7 3.25 2,078 0.67
max 22 3 840 25,019 13 9 4.85 5,869 0.88

Success Rate < 85% (9 communities)
mean 11 234 9,126 4 4 2.06 1,796 0.09

std 10 534 6,271 2 3 0.85 721 0.17
min 5 15 2,202 2 2 1.50 693 0
25% 6 29 6,305 3 3 1.67 1,039 0
50% 6 35 7,006 3 3 1.80 2,078 0
75% 12 88 11,189 5 3 2,00 2,078 0.06
max 35 1,653 23,916 8 11 4.25 2,970 0.44

All (72 communities)
mean 58 393 10,832 29 6 2.96 2,235 0.20
std 122 686 5,799 78 4 1.18 1,092 0.22
min 3 2 2,202 2 1 1.50 693 0
25% 8 33 6,894 3 3 2.00 1,558 0
50% 17 78 9,053 8 5 2.93 2,077 0.15
75% 36 381 14,915 13 8 3.63 2,728 0.30
max 789 3,840 27,555 579 15 6.46 5,869 0.88

Table 6 Communities with high success rates vs. communities with  lower success rates. The
indicators  are  averaged  by  community.  Sub-table  “All”  shows  the  indicators  for  all  72
communities.

5. Conclusion

Community detection makes it possible to identify very diverse groups in a social
network. This paper demonstrates a methodology to choose one relevant community
detection algorithm, among 11 well-known ones, providing fruitful insights into the
cooperation forms not directly observable on a crowdfunding platform. 

The choice  of a particular  community detection  method is  not an easy or  a
neutral  choice.  As  demonstrated  in  the  paper,  depending  of  partition  methods,
practitioners  obtain  a  range  of  various  community  types,  which  will  drastically
change the final results of their analysis. This paper substantiates that an accurate
way to choose one suitable method is a complex task. Especially in the context of



exploratory studies it necessitates the combination of a range of techniques, e.g. in
our case, partitions’ similarities, qualitative criteria and structural indicators (string-
based, star-based or clique-based organizations of communities). 

In line with N. Smith et al. [24] this study substantiates that the choice of a
method  is  determined  by  the  research  context  and  problematics.  Additional
techniques, specific data and indicators allow to narrow down the scope of available
options  in  the  methods  choice.  Their  alignment  with  the  practitioners’  research
question plays a crucial role for the final choice of a particular method.  In the
framework  of  the  case  study  presented  in  this  paper,  the  choice  of  the  Edge
Betweenness method results from the analysis of socio-economic characteristics and
the exploration of the distribution of Ululers’ profiles. This way, we have identified
3  robust  families  of  platform’s  communities  and  their  distinctive  features,  i.e.
organization,  number  of  participants,  collaboration  intensity,  thematic
specialization, and performance in the fundraising campaigns.  Depending on the
context and available data, different socio-economic indicators may be mobilized to
obtain  the  communities’  classification  and  a  range  of  further  business-oriented
questions may be addressed: e.g. precise distribution of string-based, star-based or
clique-based forms in communities’ families, life circle and  evolution dynamics of
the communities and many others.
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