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Abstract. We present the HASARD method that is an hybrid approach for ex-
tracting adaptative temporal association rules. This method extracts assocation
rules between events occuring in subsequent time-intervals using closed itemsets
extraction and evolutionary techniques. An important feature is its capacity to
consider different time-intervals depending on the analysed attribute. This method
was applied for the analysis of long term medical observations of atherosclerosis
risk factors for cardio-vascular diseases prevention. Experimental results show that
it is well-suited for extracting knowledge from temporal data where interesting
patterns have different observation period length.

1 Introduction

In this paper, we consider sequential association rules which express casualty relation-
ships between sets of events occuring in subsequent time-intervals. We developed a specific
approach, called HASARD for Hybrid Adaptative Sequential Association Rules Discov-
ery, for finding such patterns of interest. Our methodology is applied to an health care
problem, but it is also suited to a broad collection of data mining problems where data
are temporal observations on individuals, in customer behaviour or credit risk prediction
for instance. Many studies have focused on the efficient mining of sequential patterns or
patterns in time-related data. Most of them are based on extensions of the APRIORI
algorithm [AMS+96] proposed for extracting association rules. The HASARD approach
presented in this paper combines techniques for searching closed itemsets, as defined in
the CLOSE algorithm [PTB+04], and an heuristic approach relying on a genetic algo-
rithm.

We used the HASARD approach for the analysis of long term observation data in the
STULONG dataset. This dataset was constituted in the framework of a longitudinal
study of atherosclerosis risk factors to evaluate the impact of non-pharmacological pre-
scriptions on these rigks. It contains data collected between 1975 and 2001 on a population
of 1417 men born between 1926 and 1937 in Czechoslovakia. First, an entry examina-
tion was performed and data concerning social characteristics, diet, tobacco and alcohol
consumption, physical activities, personal anamnesis and, physical and biochemical ex-
aminations were collected. During this examination, patients were classified into three
groups according to principal atherosclerosis risk factors (RFs): Arterial hypertension, hy-
percholesterolemia, hypertriglyceridemia, overweight, smoking and positive family case
history. These three groups are the following:



— Normal group (NG): No risk factor and no cardio-vascular disease.
— Risk group (RG): Some risk factors and no cardio-vascular disease.
— Pathological group (PG): Cardio-vascular disease diagnosed or cause of death.

During the twenty one years following the patients’ entry, control examinations were
performed to record changes in diet, smoking habits, physical activities and responsability
level in job, sport practice in leisure time and, physical and biochemical measures. For
each control, the patient id, the date and the control number were recorded. In 2001,
389 patients were deceased and, the cause and date of death were recorded. For a group
of 403 patients that answered to a postal questionnaire, detailled data — similar to those
gathered during controls — were collected.

The STULONG dataset was collected at the 2nd Department of Medicine, 1st Faculty of
Medicine of Charles University and Charles University Hospital, U nemocnice 2, Prague 2
(head. Prof. M. Aschermann, MD, SDr, FESC), under the supervision of Prof. F. Boudik,
MD, ScD, with collaboration of M. Tomeékova, MD, PhD and Ass. Prof. J. Bultas, MD,
PhD. The data were transferred to the electronic form by the European Centre of Medical
Informatics, Statistics and Epidemiology of Charles University and Academy of Sciences
(head. Prof. RNDr. J. Zvarova, DrSc). At present time the data analysis is supported by
the grant of the Ministry of Education CR, Nr LN 00B 107.

Objectives. One of the main objectives of this study was to evaluate the impact of
behavioural changes — starting or stopping a diet or sport practice for instance — on the
RF and the development of cardio-vascular diseases (CVDs). The initial analytical ques-
tions in STULONG evolved after the first experimentations and discussions with medical
experts, mainly because of the evolutions of medical knowledge since the beginning of
the study and missing data (e.g. uriacid measure is given for less than 10 % of controls).
During this work, we have developped a new method that, we believe, will help to answer
the following questions defined throughout discussions with medical experts and related
to the long-term observations:

— Are there differences between men of the normal, risk and pathological groups from
the viewpoint of the impact of behavioural changes on RF and CVD developement ?

— What characterizes men who developed a CVD and those who stayed healthy on the
global population and the risk group ?

— Are the education level and the responsability in job good criteria for segmenting
patients with perilous or safe behaviours and high or low RF ?

HASARD is an association rules extraction approach incorporating temporal relation-
ships. It extracts sequential association rules which, we believe, are well fitted to anal-
yse casualty relationships between behavioural changes and, RF evolutions and CVD
development. Association rule extraction, first introduced in [AIS93], aims at discov-
ering casualty relationships between sets of attribute values, called itemsets, in large
datasets. An example association rule, fitting in the context of market basket analysis
is: buy(cereal) N buy(sugar) — buy(milk), support = 20 %, confidence = 75 %. This rule
states that customers who buy cereal and sugar also tend to by milk. The support mea-
sure indicates that 20 % of all customers bought both three items and the confidence
measure shows that 75 % of customers who bought cereal and sugar also bought milk.
Informaly, the support represents the range of the rule and the confidence indicates the
precision of the rule. In order to extract only statisticaly significant association rules,
only those with support and confidence at least equal to some user defined minsupport
and minconfidence thresholds are generated.



Organization. In section 2, we present preparation and transformation methods ap-
plied to the dataset for extracting long-term observation related patterns. Sequential
association rules and the techniques we used for their extraction are defined in section 3.
In section 4, we show experimental results and section 5 concludes the paper.

2 Data preparation

Data for the long-term observation were collected during the twenty one years controls
after the patients’ entry. We used both entry and control data to generate multiple
datasets that are adapted to the kind of knowledge we were interested in. Attributes of
interest were selected and prepared according to discussions with medical experts, for
determining threshold values of physical and biological measures for instance.

2.1 Sequential rules and search strategy

Since our main objective concerns the effect of behaviour on risk factor development,
we decided to look for sequential rules involving casualty relationships between patient
behavioral changes and risk factor changes on subsequent time intervals.

Sequential rules with the form X — Y we search for involve both itemsets and time-
itemsets. We call time_item an attribute value occuring in a particular temporal win-
dow. We call time_itemset a set of time items. Our sequential rules have the following
structure:

IDE itemset A BEH time itemset — RF time_itemset
where the components are:

— IDE itemset: an itemset of static identifiaction attributes,
— BEH time_itemset: a time itemset of behavioural attributes,
— RF time_item: a time_item on a risk factor attribute.

An example sequential rule may be:
ALCOHOL=regularly N BEH PHA=decreased_ sits — RF _CHOLEST=increased.

Such a rule must be interpreted as a casualty relationship between changes on risk factors
occuring on an observation temporal window of O months and induced by static data and
by changes on behaviour on a previous action temporal window of A months. We also
defined a latency temporal window L between the action period and the observation period
which allows a waiting time to observe the impact of some behavioural changes.
The example rule should be interpreted as follows:
if the patient regularly consumed alcohol when he entered the study
and his physical activity after job decreased over a A month period
then his cholesterol rate increased at a control which occured L months after

and over the subsequent O month observation time.
An important element for the method flexibility is that temporal window sizes O, A and
L are defined as parameters of sequential rules. The strategy we applied for extracting
these rules was first running wide data transformations to tailor data to the specific task.
This first step consisted in applying corrections, replacing missing values, creating new
attributes and a new table for saving behavioural and risk factor changes and flattening
data on changes.



Rule quality is computed according statistical criteria like traditional association rules.
Statitical measures are presented in sections 3.1 and 3.3. HASARD flexibility is also
provided by the evolutionary algorithm involved for searching for rules. We defined a
Genetic Algorithm (GA) for this task. GAs [GR87] are well suited to large combinatorial
search spaces. GAs are adaptive procedures that evolve a population of structures in order
to find the best individual. The evolution is performed by specific genetic operators like
mutation and crossover. They have a long history of being exploited for rule manipulation
[Freitas02,SAL03]. As it was suggested, they offer techniques such as niching which allow
not only to find the best rule, but a selection of good rules.

2.2 Patient classes

In order to observe potential differences between classes of patients, we distinguished the
following groups:

— NG, PG and RG assigned to patients in the STULONG study.

— CVD and NCVD which respectively represent patients who had and did not have a
cardio cascular disease during the STULONG study.

— Classes of patients based on their education level and job responsability criteria.

Classes CVD and NCVD were obtained by splitting the EXPERIMENT table using
attributes CONTROL.HODNXx, with x # 0 and x # 15, that indicates if a cardio-vascular
disease was diagnosed and DEATH.PRICUMR that indicates if his death was due to a
cardio-vascular disease.

Classes of patients based on their education level and job responsabilities criteria were
obtained as follows. In a first attempt, we extracted all closed patterns containing at least
the social factors but those gathering a relevant number of patients (at least 200) did not
reveal a significant medical interpretation. This is due to the fact that some attribute
values cover a large number of patients (e.g., 1023 patients among the 1199 are married).
After talking with a physician, his main opinion was that “education level” (VZDELANT)
and “responsibilities in job” (ZODPOV) are most likely to influence atherosclerosis. So we
decided to start building the clusters from these two attributes. We investigated the
closed patterns containing the items coming from these attributes. We got the following
11 closed patterns (or potential clusters):

1. basic school and others (for responsibilities in job)
primary school and managerial worker
primary school and partly independent worker
primary school and others
secondary school and managerial worker
secondary school and partly independent worker
secondary school and others
university and managerial worker

9. university and partly independent worker
10. university and others
11. university and pensioner (not because of ICHS)

XN oot W

As values secondary school and university are very close, we merge closed patterns
number 5 and 8 to produce the first cluster. We perform a similar process with closed
patterns number 6 and 9, 7 and 10, 1 and 4. The fifth cluster contains the 151 remaining
transactions (closed patterns 2, 3 and 11). Finally, we obtain the non-overlapping clusters
described in table 1.



Social description Number of patients

Cluster|Secondary school| Responsibility in a job |healthy|atherosclerosis|Total
1 yes managerial worker 150 60 210

2 yes partly independent worker| 227 82 309

3 yes others 127 59 186

4 no others 221 122 343

5 - - 94 57 151
Total of patients 819 380 1199

Table 1. Description of clusters.

2.3 Attributes of change and new tables

A preliminary step consisted in correcting some errors or contradictions and replacing
missing values. We replaced both null values and values explicitly by the same value.
We built new tables CHANGES and EXPERIMENT more fitted to the task from the
initial tables ENTRY, CONTROL. The DEATH table was used in order to split patient
set into two classes CVD and NCVD. Discussions with medical experts allowed us to
identify some guidelines for building tables and to understand which initial variables we
had to keep an which ones we have to build. First, we kept existing identification variables
(IDE variables) about patients. These variables were named according to the expression
IDE _wvariable_name. They are listed below:

— the age of the patient, his education level,

— the initial group of the patient when he came into the study,

— the alcohol consumption at the beginning of the study since STULONG data do not

provide this information for each control.

For informations varying from one control to another, we built variables related to be-
havioural changes on one hand and variables related to risk factors changes on the other
hand. Behavioural change variable (BEH change variable) were named according the
expression BEH wariable_name and risk factor change variable (RF change variable)
were named according to the expression RF wvariable name. These attributes are listed
in table 2.

Variables for behavioural changes | Variables for risk factors
Consumption of cigarettes a day Cholesterol level

Physical activity after job HDL cholesterol level
Different kinds of diet LDL cholesterol level
Physical activity in job Triglycerides level
Medecine for cholesterol Overweight or obesity
Medecine for blood pressure Bloodpressure measures

Glycemia level
Table 2. Attributes of change.

BEH and RF change variables were built from attributes of the STULONG tables EN-
TRY, CONTROL and DEATH. For instance, we show how variables BEH PHA and
RF CHOLEST are computed. The BEH PHA variable was deduced from variable
CONTROL.AKTPOZAM, which indicates the physical activity after job (see table 3).
RF CHOLEST was deduced from variable CONTROL.CHLST, which indicates the
global cholesterol rate, as shown in table 4.

The new CHANGES table is composed with IDE variables, BEH and RF change variables
by using the CONTROL table. This tables contains as many tuples as the CONTROL



Value CONTROL.AKTPOZAM (N) CONTROL.AKTPOZAM (N+1)
stay _ sits he mainly sits he mainly sits

decreased _sits moderate or great activity he mainly sits

increased _modest |he mainly sits moderate activity

stay _modest moderate activity moderate activity

decreased modest|great activity moderate activity

increased great |he mainly sits or moderate activity|great activity

stay _great great activity great activity

Table 3. Variable BEH_PHA.

Value CONTROL.CHLST (N)|[CONTROL.CHLST (N+1)
stay _normal <6 <6
decreased >6 <6
increased <6 >6
stay _high >6 > 6

Table 4. Variable RF  CHOLEST.

table. In order to get a temporal description of each patient all along the study, we
flattened the CHANGES table. The EXPERIMENT table is the result of the flattening
operation; it contains as many tuples as patients in CONTROL. One tuple in EXPERI-
MENT contains IDE variables of the patient and changes variables for every control the
patient passed through.

3 Strategies

3.1 Target model and definitions

We consider the time segment which represents the intervention on a patient from the
time he entered the study until the time he left it. Our discussions with medical expert
led us to fix a month as the time unit. Let us consider a patient and the time-interval
[In ; Out] during he was in the STULONG study.

C(T, patient) refers to a control occuring at time T months after In for the patient. A
control C(T, patient) is characterized by a BEH time itemset and a RF _time item
which represents behavioural and risk factors changes observed for the patient at this
control time. A ControlPeriod CP(T, patient) is a A-month size time interval [T ; T+A]
where it occurs one control at least for the patient. A Temporal Configuration TC(T1,T2,
patient) is a time interval [T1 ; T2] such as:

— it exists a ControlPeriod v=CP(T,patient) with T1 € [T ; T+A4],

- T2 € [T1+L ; TI+L+O0],

— it occured a control C(T2, patient),

— it did not occur any control in the interval [T+A ; T2] for the patient.

We say that two Temporal Configurations TC(T1,T2, patient) and TC(T3,T4, patient)
are compatibles if T2 < T8 or T4 < TI.

Statistical measures. We define the measure Maz_Support as the whole number of
possible compatible Temporal Configurations for all records (patients) in the flattened
table EXPERIMENT. For a rule antecedent X = IDE itemset U BEH time itemset,
we say that a temporal configuration TC(T1,T2, p) contains X if:



— IDE _itemset is observed for the patient p,
— BEH _time itemset is observed over a ControlPeriod y=CP(T,patient).

For arule consequent Y =RF _time_ item, we say that a temporal configuration TC(T1, T2,
p) contains Y if RF_time_item is observed at control C(T2, patient). For a rule an-
tecedent X, we define the cardinality measure of X, Card(X) as the number of possible
compatible TC(T1,T2, p) which contains X. For a rule consequent Y, we define the
cardinality measure of Y, Card(Y) as the number of possible as the number of possible
compatible TC(T1,T2, p) which contains Y.

For a rule X — Y, we define the cardinality measure of X AY, Card(X UY ) as the
number of possible TC(T1,T2, p) which contains X and Y.

3.2 Association rules based approach

Two main approaches for extracting association rules can be distinguished.

In the first approach, all itemsets with support > minsupport, called frequent itemsets, are
extracted and all association rules with confidence > minconfidence are generated from
them. This approach is very efficient when data are weakly correlated, such as market
basket data, but performances drastically decrease when data are dense or correlated,
such as statistical data for instance. A comprehensive survey of this approach can be
found in [AMS-+96].

The second approach is based on the extraction of generators and frequent closed item-
sets defined using the Galois closure operator. From these, the informative basis for
association rules containing non-redundant association rules with minimal antecedent
and maximal consequent. This approach both improves the extraction efficiency, by re-
ducing the search-space, and the result relevance, by suppressing redundant rules, in the
case of dense or correlated data. A summary of this approach can be found in [PTB+04].

Frequents closed itemsets and generators. Frequent closed itemsets and generators
are defined according to the closure operator ¢ of the Galois connection. This operator
associates with an itemset [ its closure ¢(1) that is the maximal set of items common to all
objects containing [. That is, the closure of [ is the intersection of all objects containing
I. The minimal closed itemset containing an itemset [ is its closure ¢(l) and we say that
an itemset [ is a closed itemset if ¢(1) = I. The generators of a closed itemset ¢ are the
minimal® itemsets which closure is c. Generators are the minimal itemsets we can consider
for discovering frequent closed itemsets, by computing their closures. Since the support
of a frequent itemset is equal to its closure support and since maximal frequent itemsets
are maximal frequent closed itemsets, the frequent closed itemsets constitute a minimal
non-redundant generating set for all frequent itemsets and thus, for all association rules.
Consider the dataset D, constituted of six objects identified by their OID and five items,
represented in figure 1(a). The eight generators and five frequent closed itemsets, with
their supports, in D for minsupport = 2/6 are given in figure 1(b).

The itemset {A} is the generator of the frequent closed itemsets {AC}: the intersection of
all objects containing {A}, that are objects 1, 3 and 4, gives {AC} and no subset of {A}
has {AC} as closure. {A} and {AC} both have a support of % = 3/6. The frequent
closed itemset {BCE} has two generators: {BC} and {CE}. {BE} is not a generator of
{BCE} since it is a frequent closed itemset, {B} and {E} are generators of {BE} and
{C} is itself its own generator.

3 With respect to the inclusion relation.



Generator Frequent closed itemset Support

OID Items {A} {AC} 3/6
1 A C D {B} {BE} 5/6
2 B C E {C} {C} 5/6
3 A B C E {E} {BE} 5/6
4 B E {AB} {ABCE} 2/6
5 A B C E {AE} {ABCE} 2/6
6 B C E {BC} {BCE} 4/6
(a) Dataset D. {CE} {BCE} 4/6

(b) Extraction result.

Fig. 1. Generators and frequent closed itemsets.
3.3 Evolutionnary approach

Genetic Algorithms are robust, flexible algorithms which tend to cope well with attribute
interaction in atherosclerosis data. Furthermore, the comprehensibility of the discovered
knowledge is important and GAs allow us to extract comprehensible rules evolving pop-
ulations of prediction patterns. Our GA implementation uses EO, a templates-based,
ANSI-C++ compliant evolutionary computation library.

Genome. The first issue in designing a GA is how to encode each individual in the
population. To represent variable length rule we use a fixed-length genome which contains
a gene for each IDE attribute and BEH attribute and another gene for one of the
RF attributes. Each gene contains three elements: attribute name, attribute value and
an activation flag indicating whether or not an item in the rule is associated to the gene.

Generation of initial population. The method used to generate the initial population
is based on CLOSE algorithm results. CLOSE generate a list with generators and their
frequent closed itemset associated, that allows us to initialize the population in three
steps:

— rule antecedents are created from generators. Generators containing only RFs are
skipped,

— rule consequents are created with the first RF found in the frequent closed itemset
or the generator. If no RF is found, we generate randomly one.

— for each atribute not represented in generators the value of the corresponding gene
is randomly defined and the activation flag is set to false.

Genetic operators. We use the tournament selection with size of 2. The selection is
deterministic, starting from the best ones down to the worse ones. If the total number
to select is less than the size of the source populations, the best individuals are selected
once. If more individuals are needed after reaching the bottom of the population, then
the selection starts again at top. It the total number required is N times that of the
source size, all individuals are selected exactly N times. For replacement we use the most
straightforward method, called generational replacement where all offspring replace all
parents; however weak elitism is used.

New patterns are generated by combining existing patterns using a crossover operator
or by modifying existing patterns via a mutation operator. Crossover is a recombination
operator that swaps genetic material between two individuals. We used a one point
crossover method. Three mutation operators were used: first one simple changes the



attribute of a gene with a random attribute, the second generates a random transition
value (domain of this value is a parameter of the GA) which is randomly added or
subtracted to the current gene value and the last inverts the current value of the activation
flag. All of the mutation rates can be define independently.

Fitness function. A crucial issue in the design of a GA is the choice of the fitness
function. In a first approach we only consider support to select the most frequent rules,
confidence to consider reliable rules and lift to ensure a high level of dependence between
antecedent and consequent part of a rule. To evaluate the quality of a X — Y rule, our
GA applies the fitness function on the individual associated to the rule.

Fitness(rule) = Support(rule) x Con fidence(rule) x Li ft(rule) (1)

Support(rule) = % (2)  Confidence(rule) =

Card(X UY)
Card(X) 3)
Card(X UY)

Lift(rute) = Card(X) « Card(Y) )

4 Experimental results

4.1 Patients classes comparison

Patient groups. The experience consisted in extracting rules on PG and testing them
on NG and RG. One may observe that the best rules found on PG are not valid on NG.
Most of them have a good support but a weak fitness on RG. Thus these results show
quite different relationships between the patient behaviour and their risk factors among
initial groups.

0.04 10
PG —~—
NG ——
¢ RG =
0.03 W
01f
5 a
g o002+t g 001}
a T
0.001 |
0.01 - u ) B o
; 0.0001 ¥ 2} n R
ol g2 e £ E 1e-05

Fig. 2. Best rules on PG versus NG and RG.

Cardiovascular disease. The experience consisted in extracting rules on CVD and
testing them on NCVD. One may observe that the best rules found on CVD have similar
support and fitness on NCVD. These results seem to show that relationships between
behavioural changes and risk factors are not really different between CVD and NCVD
patients.
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Fig. 3. Best rules on CVD versus NCVD.

Social classes. The experience consisted in extracting rules on Clusterl and testing
them on Cluster3 and Cluster4. One may observe that best rules found on Clusterl
stay good on Cluster4. Cluster3 does not give too much different results. Thus it seems
that social factors like education level and job responsability do not allow to distinguish
different behaviour related to cardiovascular risks. distinguish different behaviour against
cardiovascular.
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Fig. 4. Best rules on Clusterl versus Cluster3 and Cluster4.

4.2 Initialisation methods

In order to evaluate performances of our initialization method we compare it with a
random initialization method. Results on PG and RG groups and on CVD and NCVD
classes are shown in figure 5 and 6 respectively. The first three columns show statistics
about initial populations and the last column show the fitness of best individuals after a
GA run. We can observe that mean fitness of populations generated using CLOSE is 8.75
to 400 times better than those of randomly generated population. It is not surprising
since CLOSE optimize rules support and confidence, two mains criteria of our fitness
function. However, it is interesting to note that after a GA run the fitness of the best
offspring of populations generated using CLOSE is 1.55 to 4.79 times better than the
best offspring of randomly generated population. Furthermore, an analyze of rules show
that GA doesn’t converge toward local optima given by CLOSE. Then we succeed in
improving GA performances conserving diversity in solutions proposed.
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Fig. 6. Comparing initialization methods on patient clusters.

4.3 Observation time windows variations

Time windows A, L and O, used to extract antecedents and consequents of rules, define
time_ itemsets. An important aspect of the HASARD method is its capacity to make vary
these time windows. In the STULONG analysis, the observation time of RF evolutions
depends on the considered risk. For instance, according to physicians’ knowledge, the
effects of a diet on the weight are perceptible after a few months whereas the effects on
the cholesterol measures are most often perceptible after a longer period.

We evaluated the effect of RFs observation time window variations on the fitness of rules
for two RFs: RF_ CHOLEST and RF_ BLOODPRESS. The results are shown in figure 7.
For RF CHOLEST, rules generated for a 60 months window have a much better fitness
than those generated for a 15 months window. For RF_ BLOODPRESS, the situation is
the opposite: a 15 months window gives better fitness than a 60 months window. This
shows that effects of non pharmacological prescriptions on hypercholesterolemy must be
observed on much longer time period than effects on arterial hypertension.

5 Conclusion

In this paper, we have presented an innovative method for extracting adaptative sequen-
tial rules. We have applied the method on the atherosclerosis STULONG dataset. While
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Fig. 7. Effects of observation time window length variations on rules fitness.

previous works on this dataset essentially focused on static information from the ENTRY
table, we have investigated the analysis of temporal data in the CONTROL table. Our
approach is based on two main points:

— a set of data transformations which is suited to various temporal data,

— an hybrid strategy which combines advantages from quite different techniques: an
exhaustive search for frequent closed itemsets which are used as the initial population
of an evolutionnary algorithm.

Experimental results allowed to point out different tendencies among patient groups
and confirmed prior medical knowledge. In order to answer the analytical questions, a
complete analysis of the sequential rules with the assistance of medical experts will be
required.

In the future, we plan to apply the HASAR approach to other temporal datasets and to
extend it by integrating background knowledge, such as medical ontologies, in the search
process.
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